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EXECUTIVE SUMMARY 

The 3D Strength Prediction of Composite Materials (3DSPC) program, sponsored by the 

Air Force's Materials Directorate at AFRL, focused on lowering the cost of implementing 

advanced composites in aerospace structures by making significant advances in design 

methodologies for the use of composite materials to maximize performance and material 

efficiency. Traditionally, many expensive coupon-level mechanical property measurement tests 

are conducted on candidate composite materials to provide designers with accurate thermoelastic 

constants to be used in design. The same mechanical tests often provide designers with less than 

acceptable failure information. A proven technique for applying coupon level strength properties 

to complicated structures with varying laminate thickness and layups does not exist. The failure 

modes that occur in the actual structures often do not exist in the coupons or do not exist in the 

same ratios and combinations. The result is that further mechanical failure testing of prototype 

parts is required which drives up the cost of using advanced composites. 

The 3DSPC program addressed the issue of reducing mechanical testing costs by 

increasing the understanding of the mechanical response and progressive damage states in a 

range of advanced composite materials, which include high temperature brittle matrix 

composites (BMC) and polymer matrix composites, through the use of state-of-the-art analytical 

techniques. Two major routes were investigated - micromechanics (fiber/matrix level analysis) 

and 3D macromechanics (individual lamina level analysis) as opposed to the laminate level 

analyses that are currently being employed. 

The advancements by Nicholas Pagano and G. P. Tandon over the few years prior to this 

program regarding global unidirectional composite behavior, material properties at the 

constituent level,  and the boundary conditions which simulate interfacial damage, led to 



increased understanding of the key mechanisms associated with failure of composite laminates. 

That is9 the study of the response of a unidirectional layer or various micromechanical 

parameters such as phase geometry and interfacial properties resulted in identification of critical 

features that are common in fiber-reinforced composites. The current work (Part A) builds on 

the previous micromechanics research by Pagano and Tandon by modeling several interface 

strength tests, the end notched flexure (ENF) test, a high void content oxide-oxide composite for 

use in the hot section of turbine engines, and load transfer to the remainder of a composite from a 

fiber break. 

The micromechanics portion of the 3DSPC yielded several important results. The 

cruciform geometry was utilized to evaluate the interfacial normal strength in unidirectional 

composite systems using single fiber specimens. The stress level at debond initiation was 

measured using indicators from several sources such as development of photoelastic fringes, a 

jump in the strain response of surface gages, the first significant occurrence of acoustic emission 

activity, and visual observation using a reflected light technique. The experimental observations 

of damage initiation and ultimate failure were found consistent with the numerical prediction 

using 3-D FEM. Interfacial stress distributions in the single-fiber pushout specimen were also 

obtained using two numerical techniques. The pushout test verified the necessity of using an 

elastic analysis on the order of an axisymmetric FEM model including a point-by-point 

representation of friction for data reduction of pushout test results. 

A more rigorous elasticity model for analysis of the ENF test for characterization of 

Mode II fracture toughness was developed. Numerical results of this analysis were used to 

assess the accuracy of various solutions available in the literature, including beam theory. The 

ENF specimen was then used to evaluate the fracture toughness of a polyester/epoxy planar 



interface, and the predictions were correlated (with mixed success) with previously obtained 

values from pushout testing. Finally, an oxide-oxide composite consisting of a 2-D 

reinforcement in a matrix consisting of alumina particles, voids, inherent cracks due to the 

processing conditions, and a silica bonding agent was analytically modeled. Predicted quantities 

are presented including the thermomechanical effective moduli, the thermal conductivity tensor, 

and damage due to processing conditions. 

Part B of this report describes the development and implementation of a 3D variational 

model for predicting failure of composite adhesive joints through accurate lamina level 

calculation of stress, strain, and energy release rates. Prior to the 3DSPC program the Air Force 

and the aerospace industry utilized an outdated analysis methodology in designing composite to 

composite and composite to metal bonded structures. Since the approaches relied on were 2-D 

and 3-D FEM, and they required a prohibitive number of degrees of freedom to achieve 

convergence, the predicted strength and durability of adhesive joints were calculated with 

unknown accuracy and relied heavily on empirical data obtained a great expense. This work was 

conducted by Alexander Bogdanovich and builds on the recent developments in spline 

variational theory and its implementation (by Endle Iarve) for the prediction of failure in 

composite bolted joints. 

A generalized version of a spline variational model referred to as the "mosaic model" was 

developed to accurately calculate stresses, strains, and displacements in complex shaped 

composite structures assembled from anisotropic parallelepipeds. The approach enforces 

continuity of displacements between similar material blocks and continuity of displacements and 

stresses between dissimilar material blocks. In addition, the model includes the effects of linear 

thermal expansion and moisture swelling.   The theory was first applied to model double-lap 



composite adhesive joints, and the results were compared to 3-D FEM results. A concept of 3-D 

progressive damage and fracture modeling was next proposed and illustrated on the example of 

interfacial crack growth in a double cantilever composite solid. The novel theoretical approach 

for analyzing 3-D problems of crack propagation was then applied to double and single lap 

composite to composite and composite to metal joints. Extensive results are documented 

including the locations of maximum stresses and strains as well as energy release rates as a 

function of joint geometry. Finally, a comprehensive discussion of the effects of the spew fillet 

in adhesive joints on the stress distributions near the end of the overlap is presented. 



1.0 A CRITICAL SHEAR ENERGY RELEASE RATE CRITERIA FOR DEBONDING 
IN A PUSH-OUT TEST1 

1.1 Introduction 

The objective of this study was to model the progressive debonding portion of the load- 

displacement response in a push-out test including initiation of debonding, propagation and 

eventually catastrophic debonding of the remainder of the bonded interface using a single 

parameter characterized as the critical shear energy release rate of the interface. In a recent study, 

Tandon and Pagano [1] had employed the variational model of a concentric cylinder to 

accurately model the fiber push-out and re-push test used for evaluation of interfacial properties. 

The detailed stress distributions and load-displacement solutions obtained by considering a 

variety of interface boundary conditions (such as adhesively bonded, frictionally sliding and 

debonded) were compared with a numerical elasticity solution using the material properties of 

polyester/epoxy system for which experimental data was available [2].. 

Further, to resolve the problem associated with vanishing strain energy release rate because 

of a weak singularity at the crack tip, a critical finite crack length extension, equal to the 

minimum layer thickness in the model, was suggested [1] for evaluation of the toughness of the 

interface using energy balance arguments. Also, the direct contribution of normal and shear 

tractions to the change in potential energy could be separated, although the stress components 

were related by the frictional law in the slip region. It was found that the model predicted the 

apparent toughness of the interface to increase with the length of the debond while the numerical 

contribution of shear stresses to the potential energy release rate was nearly constant. 

1.2 Initiation 

In this work, we have employed the critical shear energy release rate criteria (GT = G^) to 

predict the onset of debonding, i. e, the critical force needed to "pop-in" the debond during the 

1  (Presented at the Symposium on Micromechanics of Fiber Reinforced Composites, 5th International Conference on Composites Engineering, 
Las Vegas, Nevada, July 5-11,1998) 



push-out test. This is accomplished by determining the values of applied displacement (d*) and 

hence, corresponding force (F*), which result in GT = Gm for a number of debonds. As seen in 

Fig. 1-1, both F* and d* values display a minimum with debond length. Thus, according to this 

criterion, the length of the debond will continue to increase until stable crack growth takes place 

(corresponding to the minimum in the curves shown in Fig. 1-1). The debond length value at 

which stable propagation begins to take place is the critical debond length at initiation and the 

corresponding F* value is the value of the force at which the debond will initiate. If the approach 

was perfectly consistent, both F* and d* would be minimum at the same value of the debond 

length. However, there is some (small) error due to the number of layers utilized (N=10) along 

with using the average value of the shear energy release rate as the critical shear energy release 

rate. Further, in determining d* and F* values as a function of debond length, a curve was fitted 

to approximate the relationship between GT and force versus displacement. However, the error 

introduced due to this approximation is minimized by narrowing the range of interpolation 
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Fig. 1-1: Estimation of debond length on initiation using critical shear energy release rate 
criteria. 

1.3    Propagation 

As the debond propagates, the force-displacement response is next predicted by meeting the 

proposed failure criteria. This is accomplished by determining the values of applied displacement 

(d*) and hence, force (F*), which result in GT= G^ for each debond length measurement made by 

Bechel and Sottos [2]. This comparison with experimental data is illustrated in Fig. 1-2 and is 

extremely good for all debond lengths considered. During this stage the stress increases at a 



decreasing rate with increasing displacement to a maximum (a*d) at which point catastrophic 

debonding occurs along the remainder of the bonded interface. 
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Fig. 1-2: Comparison of force-debond length relationship during push-out test 

1.4    Ultimate Failure 

The critical shear energy release rate criteria is also applied to estimate the maximum debond 

stress and the corresponding critical debond length for the push-out specimen. The variation of 

F* and d* values with the length of the debond is plotted in Fig. 1-3. It is seen that both F* and 

d* values pass through a maximum as the debond length is increased. Beyond a certain length of 

the debond, lesser force and displacement is needed to satisfy the critical shear energy release 

rate criteria and the debond becomes unstable. The debond length value at which unstable 

propagation begins to take place is the critical debond length for catastrophic debonding. Again, 

both F* and d* do not -tttain maximum values at the same value of the debond length. However, 

the differences are small and our estimates of the maximum debond stress, externally applied 

lisplacement and critical debond length are very close to the experimental measurements and 

therefore lend credence to the use of critical shear energy release rate criteria for a unite crack 

extension (Aa) for estimating these quantities. The predictions were also shown to be relatively 

independent of the magnitude of i~a over a wide range of the latter extension. 
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2.0 STRESS FIELDS IN A SINGLE FIBER PUSH-OUT SPECIMEN CONSIDERING 
INTERFACIAL DAMAGE AND FRICTION1 

2.1 Introduction 

Sophisticated and accurate analysis methods are required to enhance the understanding of the 

fiber-matrix interfacial damage evolution and the nature of mechanisms driving the damage 

growth. These analyses may also provide improved methods for obtaining values to the 

parameters characterizing the material behavior such as the adhesive bond strength and 

coefficient of friction from experimental data. In this work, the detailed stress distributions and 

load-displacement solutions obtained by using two different techniques capable of considering 

several interfacial conditions (bonded, sliding with friction, debonded, and sticking) are 

compared. 

The models considered are the Axisymmetric Damage Model (ADM) [1] which produces an 

approximate elasticity solution with a variety of interface boundary conditions and Finite 

Element Method (FEM) with the fiber-matrix interface modeled as frictional contact. ADM 

computes the load-displacement relationship and stress fields in the model for a pre-specified 

state of interface damage without using load incrementation. The finite element model 

determines the location and extent of bonded, debonded and frictional zones on the interface as a 

part of the solution using an incremental loading procedure. Figure 2-1 shows the methodology 

used to carryout the numerical studies in this paper. In this effort, the interfacial damage zones 

determined from the finite element analysis are specified in ADM analyses. Then push-in 

displacement, corresponding load and the interfacial stress distributions obtained from the two 

models are compared. 

2.2 Results and Discussion 

Several simulations are performed for polyester fiber/epoxy matrix system with assumed 

(Presented at the Symposium on Processing-Structure-Property Relationships of Composite Inteifaces, Annual TMS Meeting, San Antonio, 
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coefficient of friction, a system for which experimental data is available [2]. 

The first case investigated (Case-I) is during the residual stress development where the 

loading is considered to be monotonic from a stress-free state. Then the case of superimposing 

push-out loading after the residual stress step is discussed as Case-1L For both of these cases the 

effect of adhesion on the stress fields is determined through comparison of ADM and FEM 

solutions. Additionally, mesh and load incrementation convergence studies are performed to 

independently verify the finite element solution. 

FEM 

Meshing and load 
Step definition 

ADM 

Layer and section 
definition 

Thermal load step 
Apply AT = -100 

15 increments 

Specify order of interface regions 
e.g.: Open-Slip-Stick-Slip-Open 

Stress and Deformation 
Fields; Interfacial 

Damage States 

Apply 
push-out displacement 

w = -30 Urn in 
24 increments 

Set approximate 
size for each regions 

Apply all loads 

Iteratively adjust 
region sizes 

Check interface 
conditions for 

consistency 

Stress and Deformation 
Fields; Interfacial 

Damage States 

Stress and Deformation 
Fields 

Comparison of stress fields at the interface 

Fig. 2-1: Methodology adopted to simulate the problem in both FEM and ADM 

2.2.1 Thermal Loading 

The first load step considered corresponds to -48.5°C temperature difference or -0.0011 

shrinkage strain. There is only thermal residual stress at this point and the load history is a 

monotonic decrease of temperature from the stress free state. There are no reversals of the slip 

direction on any portion of the interface. The stick state of the interface has the same mechanical 

conditions as the perfectly bonded conditions, i.e., not only the incremental displacements AWf - 
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AWm = 0 but also the total displacements, wf -wm = 0. Fig. 2-2 shows the normal (CJRR) and shear 

stress (QRZ) distributions at the fiber-matrix interface as obtained from the ADM and FEM 

Solutions. In this case, the stress distributions obtained for both frictional contact analyses 

modeling (with slip-stick zones) and adhesive bond modeling (with slip-adhesion zones) are very 

similar in nature. The figure also shows the JICJRR distribution, which is plot to distinguish 

between the slip and the bonded/stick regions. 

Distance Along Z (mm) 

1 1.5 

-0.5 

-1.5 

-2.5 - 

Fig. 2-2: Comparison of shear stresses after monotonic thermal loading, AT = -48.5°C 

There is a small difference between the length of the slip zone obtained by ADM and that 

obtained by the FEM. This difference may be attributed to the element size used in FEM since 

ADM determines the size of the zone more precisely. 

2.2.2 Thermal and Push-out Loads 

Unlike Case-I, Case-Il has superposition of two different types of loading applied to the 

model. While the chemical shrinkage causes interfacial normal compression, the push-out 

displacements cause interfacial shear. The results obtained from the ADM and FEM models for 

this case are described for two different interfacial conditions. In the first sub-section, the FEM 
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solution is described. The FEM solution is for interface with zero tensile adhesive strength and 

obeys Coulomb's law of friction under normal compression. The solutions for finite interfacial 

adhesive strength are described in the second sub-section 

2.2.2.1  Frictional interface with no adhesive strength 

The results of the FEM analysis with no adhesive tensile strength and the fiber-matrix 

interface maintained as frictional contact is described here. Fig. 2-3 shows the evolution of the 

various interface zones during the thermal loading and subsequent fiber push-out loading. 
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Fig. 2-3: Interface damage state at various push-in displacements 

The figure describes the order of the zones and their sizes with the left end corresponding to 

the lower end (Z=0) of the fiber push-out model or the end where the push-out displacement is 

applied. After the thermal loading step, the order of the interface zones can be described as slip- 

stick-slip. The center of the model is under frictional stick (which also corresponds to adhesive 

bond in this case as the relative total shear displacement is also zero) and the ends have 

symmetric slip regions. Upon the application of 10 \xm of push-out displacement, the fiber- 

matrix interface rearranges into open-slip-slick-slip-open zones. There is a change of direction 
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slip zone and hence the sign of shear stress near the fiber push-out end. At the end of the thermal 

loading step, the slip zone closer to the push-out end has the matrix sliding outwards (along -z 

axis). This direction is reversed by the applied push-out displacement. A small open zone also 

develops at the fiber push-out end. On further application of displacement to w = 201 lm, the 

zones again rearrange to open-slip-stick-slip-open zones. An open zone develops at the opposite 

end of push-out. Thus, not only the size but the order of the zones also changes with incremental 

loading. Finally, at an applied displacement of 25 jum, the entire interface is sliding with two 

symmetric open zones at either side of the model. 

2.2.2.2  Frictional interface with adhesive strength 

As mentioned earlier, the FEM model determines the length and order of the zones using an 

incremental loading procedure. For this part of the study, the interfacial zones determined from 

the FEM solution assuming frictional contact are specified in ADM and a new FEM analyses, 

but with one major difference. The stick zone observed in the frictional analysis is replaced by a 

bonded zone of equal length in both ADM and FEM analyses. This configuration corresponds to 

a push-out displacement of 12.4 mm applied subsequent to the residual shrinkage. Thus, three 

solutions are obtained for the same applied loading but with two different fiber-matrix interface 

conditions. 

Figure 2-4 shows a comparison of the normal stress distributions from these solutions. The 

dashed lines with asterisks (--*--) show frictional-contact FEM solution, the solid line is the 

ADM solution and the dashed-line closely following the solid line is the FEM solution with 

adhesive interface conditions instead of frictional contact. These results show that the ADM 

solution and FEM solution correspond to each other if identical set of interfacial conditions are 

employed. On the other hand, the FEM frictional solution differs considerably from the adhesive 

solution. In the latter case, singularities [3] are encountered at the transition between open and 

bonded zones. Both ADM and FEM methods show the singular behavior near the bonded-open 
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interaction. However, the transitions from stick-to-slip regions are free of any singularities. 
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Fig. 2-4: Comparison of ADM and FEM Results: Radial stress disribution along the interface. 

Fig 2-5 shows the comparison between the three analyses for the shear stress component. 

Again, there is a pronounced difference between frictional stick solution, the ADM solution and 

the FEM bonded solution for the same load set. It can be seen that ADM and FEM bonded 

solutions compare very well. The frictional solution, however, is completely different from the 

bonded and ADM solutions because of the initial interface conditions and due to the load history 

dependence inherent in the frictional solution These comparisons in Figs. 2-4 and 2-5 illustrate 

the differences in the stress fields due to "bonded1' (no shear displacement throughout the 

loading history) and "stick" (no shear displacement during the last load increment but has non- 

zero total shear displacement interface conditions. These differences can be extremely important 

in the interpretation of FEM friction results. 
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Fig. 2-5: Comparison of ADM and FEM Results: Shear stress disribution along the interface 

2.3 Concluding Remarks 

In this study, we have demonstrated that the predicted stress distribution in a single fiber 

push-out specimen is strongly dependent on the damage state (or nature of the boundary 

conditions) at the fiber-matrix interface. Effective simulation of damage evolution will therefore 

require knowledge about the initial state of the specimen. Alternately, the force required to push 

the fiber completely out of the matrix can be used to infer the interfacial conditions. In the 

presence of adhesive bonding between the fiber and matrix, Tandon and Pagano [4 1 have 

calculated the maximum fiber-end load to be 395 N using a critical value of the shear energy 

release rate of the interface. However, if we assume the interface to be purely frictional, the 

maximum push-out force is predicted as 101 N. Thus, a comparison of the predicted push-out 

load with assumed interface conditions and the experimental measurements will aid in 

determining the true nature of the interface. 
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3.0 INFLUENCE OF EDGE EFFECTS IN ESTIMATING INTERFACIAL NORMAL 
STRENGTH IN MODEL UNIDIRECTIONAL COMPOSITES 

3.1 Introduction 

Interfacial normal strength is commonly determined by testing straight-sided single fiber 

composite specimens with fiber ends exposed to the free surface and interpreting debond 

initiation from the beginning of non-linearity or first occurrence of acoustic emission on the 

stress strain curve. In these specimens the free surface is a favored site for interface debonding 

because of stress intensification at this location and consequently, surface observation techniques 

and strain measurements in uniform-gage specimens may underestimate the actual interface 

debond stress. In order to remove the influence of the free surfaces from the test, two alternate 

geometries can be considered. The first design involves covering the ends of the fiber by 

embedding the fiber (Hu et al1; Tandon et al2) completely inside the matrix, whereas, the second 

design is of a composite sample in the shape of a cruciform or cross (Gundel et al3) with an 

extremely large width in the gage section. It has been shown that if the fiber is completely 

encapsulated in matrix material, the nature of the singularity near the fiber end is reversed. The 

interior singularity at the fiber " corner " now manifests itself by producing a discontinuity in the 

axial distribution of the radial stress approaching negative infinity on the interface. Initial 

debonding will therefore be prevented since the residual radial stress remains compressive. With 

the cross-shaped geometry, the central portion of the fiber/matrix interface is highly stressed 

under tensile loading, thereby forcing debond initiation and propagation in the center, away from 

the free edges. 

In this study, model single fiber composite specimens were made in the three geometrical 

configurations, namely, i) straight sided specimen with fiber ends exposed (Fig. 3-1), ii) straight- 

sided specimens with fiber ends covered (Fig. 3-2) and iii) cross-shaped design (Fig. 3-3). These 

model specimens are incrementally loaded in tension to failure and the fractured halves examined 

to identify the location of failure initiation and the extent of failure while strain and acoustic 

emission activity is continuously monitored. The three specimen designs have also been analyzed 

using 3-D finite element methods to estimate the interfacial stresses in terms of constituent 

material properties. Finally, some failure criteria (Whitney and Nuismer4) have been employed in 

conjunction with the experimental observations to estimate the normal bond strength of the 
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interface. Results indicate good correlation between experiments and the analytical predictions 

for test configurations considered in this study and demonstrate the importance of stress field 

singularities in controlling damage initiation in straight-sided samples. It is further shown that 

the cross-shaped design is successful in forcing debond initiation in the interior of the sample 

(region free of stress singularities) and therefore the results produced by testing of such 

specimens may be capable of providing the true transverse response of the fiber-matrix interface. 

3*2    Specimen Design, Fabrication and Test Methods 

In this work, model single fiber composite specimens were made in the three geometrical 

configurations, namely, i) straight sided specimen with fiber ends exposed, ii) straight-sided 

specimens with fiber ends covered and iii) cross-shaped design. The composite specimens were 

cast in rectangular and cruciform shaped silicone rubber molds for straight-sided and cross- 

shaped samples, respectively. The specimen cross-sectional dimensions are shown in Figs. 3-1 

thru 3-5. 

The samples were 0.198" (or 5.03 mm) thick for all three geometries considered. The 

composite reinforcement consisted of aluminum rods, 0.092" (or 2.34 mm) in diameter, while the 

matrix was an epoxy resin (Epon 828 from Shell Chemical Co.) cured with a polyetheramine 

(Jeffamine D-230 from Texaco, In.) for 3 days at ambient temperature. The rod surfaces were 

merely cleaned with acetone, which enabled the epoxy to strongly bond with the reinforcement. 

Rods of predetermined length were approximately positioned in the mold and epoxy resin cast 

around them. Curing at ambient temperature eliminated thermal residual stresses which are 

otherwise induced from the mismatch in coefficients of thermal expansion of fiber and matrix. 
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Fig. 3-3: Cruciform (or cross-shaped) specimen 

The free edges of the straight-sided specimen with exposed fiber ends were progressively 

ground and then polished using successively smaller diameter alumina polishing powder (final 

size was 0.3 micrometer) in order to enhance the microscopic image for crack detection. The free 
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edges of the cruciform specimen and straight-sided samples with embedded fiber ends were also 

polished after curing. Strain gauges (gauge length 3.2 mm) were then mounted on the flat surface 

in the center and along the edges of the specimen perpendicular to the fiber to monitor strain 

during loading. An acoustic emission transducer was also attached to the specimen to monitor 

failure events. For straight-sided samples with fiber ends exposed, the specimen was loaded to 

either a prescribed level slightly higher than the expected interface debonding level or up to the 

first occurrence of acoustic emission on the stress strain curve. This load was held during 

application of a fluorescent penetrant to the polished surface, and then unloaded for microscopic 

examination to capture all failure events which occurred. Straight sided samples with fiber ends 

embedded and cruciform shaped specimen were also loaded in tension, under displacement 

control, to failure and the fractured halves examined to identify the locus of failure. 

3.3    Experimental Results 

In Table 3-1, we have listed the applied stress level at debond initiation obtained either from 

first occurrence of acoustic emission or beginning of non-linearity in the stress-strain curve for 

the three specimen designs. The values listed in Table 3-1 are the average of six specimens for 

each configuration considered. It was observed5 that for straight-sided specimen with fiber end 

exposed, interface debonding initiated symmetrically near the free edges in both front and back 

of the specimen. Subsequent loading resulted in the debond crack branching into the matrix 

leading to final failure. For straight-sided specimen with fiber ends covered, it was found^ that 

failure initiated at the fiber corner and propagated over some distance along the fiber length 

before branching into the matrix. However, for cruciform (or cross-shaped) specimen, it was 

observed5 that failure initiated in the center (region free of stress singularities) away from the 

fiber ends. The debond propagated for some distance along the length of the reinforcement 

before branching into matrix. 
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Table 3-1: Applied Stress At Debond Initiation For Model Composites 

Model Single Fiber Specimen Average Applied Stress at 

Debond Initiation 

Standard 

Deviation (%) 

Straight-sided with fiber ends exposed 1207 psi (8.3 MPa) 14.1 

Straight-sided with fiber end embedded 1787 psi (12.3 MPa) 4.6 

Cruciform 2832 psi (19.5 MPa) 6.7 

3.4    Numerical Analysis 

In this work, model single fiber composite specimens have been analyzed using 3-D finite 

element analysis employing the ANSYS code. The model was simplified by using symmetry 

planes so that only an eighth of the total specimen was required to be modeled. These planes of 

symmetry were constrained by symmetry boundary conditions, whereas the outer surfaces were 

free to move in all directions. The aluminum reinforcement and the epoxy matrix were treated as 

three-dimensional eight node brick elements with the following elastic properties (handbook 

values). 

Material E(GPa) V 

Aluminum 72.4 0.32 

Epoxy 2.9 0.35 

Figure 3-4 shows the radial stress at the fiber-matrix interface in the loading direction as a 

function of distance along the length of the reinforcement for the three specimen geometries 

considered. Analysis reveals that the radial stress at the interface is the dominant stress 

component and is maximum in the loading direction. The local stresses are represented by the 

stress concentration factor (SCF), defined as the ratio of the local stress to the applied stress. The 

distance is normalized with respect to the radius of the aluminum rod. The SCF value is 1.2 in 

the center of the cruciform specimen and remains reasonably constant (within 10 percent) over 

two-thirds of the loading region. The SCF gradually decreases at locations further away from the 

center of specimen approaching zero value before increasing marginally near the free surface. 
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For straight-sided samples, the SCF at the center of the specimen is approximately 1.3 for both 

embedded and exposed fiber ends. However, as the free surface is approached for exposed rod or 

the edge of the embedded rod is approached, a sharp increase in the SCF is observed, although 

the stresses in the latter are significantly lower than the former. 

The results in the previous sections for the specimens tested indicated that only in the case of 

the cruciform specimen did interface failure occur far from the ends and that cracking initiated at 

the fiber corners in both the straight sided and embedded fiber specimens. The likely explanation 

for this behavior is the high radial stresses that occur at the fiber corners for both the exposed- 

fiber and embedded-fiber specimens, as seen in Fig. 3-4. The lower far-field applied stress at 

debonding for these specimens, compared with the cruciform geometry, are consistent with this 

local elevation of radial stress at the interface» Additional insight regarding the stresses at the 

fiber corners is provided in the next section. 
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Fig. 3-4:        Variation or radial stress with normalized distance from center of the 
specimen along the length of the aluminum rod 
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3.5    Asymptotic Analysis 

Bogy's6 analysis for edge-bonded elastic wedges provides an elegant methodology for 

analyzing the stress concentration at the fiber corners. Using Airy's stress function approach, 

Bogy6 showed that the stresses at the corner are actually singular, and can be described in the 

form Gjj ~ i~x.  Here X is the order of the singularity and is a function of the geometry and the 

elastic constants of the constituent materials, and r is the radial distance of a material point from 

the interface corner. Using Mellinfs transform, and following Bogy's formulation, one obtains an 

8x8 determinant, A, for both the exposed fiber and embedded fiber problem. The dominant 

singularity, X, is equal to -s-2, where s is the eigenvalue in the domain -2<Re(s)<-l for A=0. 

Thus, 

where sm represent zeroes of A and the angular variations ¥» (ö) are the solution X(s) for non- 

trivial solution to A/>(s)X/(S) = 0. These are obtained by a singular value decomposition method 

corresponding to 

A(sJ = 0 (2) 

3.5.1 Fiber End Exposed 

Utilizing the elastic constants for epoxy matrix and aluminum fiber, we obtain one zero 

s =-1.722. Thus, 

fffffee)=X^^W (3) 

The scaling constant K is next determined by matching the asymptotic solution with the far- 

field solution obtained from finite element analysis. The matching is done using the approach of 

Pochiraju7, although we have employed some simple tools to guide us in our selection of radius r 

at which matching is performed. In Fig. 3-5, we have compared the angular distribution of the 

normalized stress components from asymptotic analysis with the finite element solution (shown 

as solid symbols) at p/rf =0.17. The stresses have been normalized such that the hoop stress a8e 

is unity at the interface (i.e., at 6 = 0°). The good agreement between the our numerical 

calculations with the asymptotic distribution provides confidence that matching at p/rf = 0.17 is a 
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Rood choice. 

The scaling factor K is next determined by equating the hoop stress at the interface, i.e., 

p-°'278 ^eelO0) 
(4) 

3.5.2 Fiber End Embedded 

For the specimen with fiber ends embedded, we obtain two zeroes, namely, Sj = -1.789 and 

s2 =-1.679. Thus, 

aij(p,9)=K1p-o-2>U0)+K,p-2^^(0) (5) 
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Fig. 3-5: Angular distribution matching of normalized stresses from finite element 
analysis with asymptotic solution 

In Fig. 3-6, we compare the angular distribution of the normalized stress components from 

asymptotic analysis with the finite element solution (shown as solid symbols) at p/rf = 0.109. As 

before, the stresses have been normalized such that the hoop stress aee is unity at the interface 
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(i.e., at 9 - 0°), 

At present, the available data from finite element solution is limited (We are in the process of 

generating a new solution with a much finer mesh which will give us the required angular 

distribution). Nevertheless, the comparison is reasonable as shown in Fig. 3-6 for the values 

reported. In order to evaluate the scaling constants Kj and K2, we now match the hoop stress at 

the interface at two value of p/rf? namely, 0.109 and 0.174, in a manner similar to the exposed 

fiber case and obtain K^ = 1.242 and K2 = 0.065. Thus, 

Gij(p,e)=h242p~0-211 vp|j(e)+o.o65p-a321 Y?(e) (6) 

for the embedded fiber problem. Thus, the contribution of the term with the dominant singularity 

(X = - 0.321) is very small and the behavior is largely governed by the second asymptote, 

namely, X = - 0.211. Notice that the order of this singularity (X = - 0.211) is indeed smaller 

compared to the exposed fiber case (X = - 0.278) indicating that it is beneficial to embed the fiber 

in order to reduce the tendency towards interface failure from the fiber ends» 
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Fig. 3-6: Angular distribution matching of normalized stresses from finite element 
analysis with asymptotic solution 
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3*6    Estimation of Interfacial Strength and Characteristic Failure Dimension 

In this study, we have successfully demonstrated that the cross-shaped design is successful in 

forcing debond initiation in the interior of the sample (region free of stress singularities). The 

tensile strength of the interface using the cruciform specimen results can therefore be estimated 

by multiplying the externally applied stress (2832 psi) with the stress concentration factor (1.2) at 

the interface and is calculated as 3398 psi (or 23.4 MPa). This value is significantly higher than 

the value of 1750 psi reported earlier (Tandon and Kim8) which was based on 2-D concentric 

cylinder model neglecting the end effects and size (specifically thinness) of the samples. 

On the other hand, the singular stress profiles for the straight sided exposed-fiber and 

embedded fiber specimens indicate that there are two ways any useful data can be obtained from 

such specimens. As an extreme case9 the singular stress profile can be used to imply that a crack 

already exists at the fiber ends at the interface, so that the maximum load in the tensile test 

simply reflects the attainment of criticality based on the fracture toughness of the interface. The 

problem with this approach is that it requires some method of determining the initial crack 

length. The alternate approach is to assume that the failure of the interface is governed by a 

probability distribution, whereby failure occurs when area integrated probability of failure 

reaches a critical value. Therefore, even though stress can become infinite over an infinitesimal 

distance, the probability of failure will remain finite, being determined by the integrated 

probability of failure. In this study, the focus here is to determine a characteristic distance for the 

exposed and embedded fiber specimens so that the apparent strength of the interface from those 

specimens is equal to that from the cruciform specimen. 

Integrating Eq (3) for the exposed fiber case, the average hoop stress, (aee) CT? 
a* the 

interface over a normalized distance, p/rf, is then given by 

-JaeedP=-(aee)avg=-J 
K 

-*) 

(i-x) 

, at e = oü (7) 

where we now identify p with the length of the fiber starting from the fiber end. Next, we plot in 

Fig. 3-7 the hoop stress distribution at the fiber-matrix interface in the neighborhood of the 

singularity from both the numerical solution and asymptotic analysis. Notice that the two 
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solution agree very well with each other up to p/rf =0.17 (point of matching) and beyond that the 

asymptotic solution diverges from the finite element solution. This behavior is not unexpected 

since the asymptotic solution is valid in a localized region only. To get the average stresses in the 

region which is located to the right of the point at which the two solutions were matched, we now 

fit the hoop stress distribution to a power law in the form 

Gnn = K 4 , at 9 = 0° (8) 

For the exposed fiber problem, the quantities Kf and A,f are calculated as 1.47 and 0.167, 

respectively, as shown in Fig. 3-7. Notice that Eq (8) is similar in form to Eq (3), and thus, the 

average stress under this part of the curve will be given by an expression similar to Eq (7). 
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Fig. 3-7:      Comparison of hoop stress from finite element analysis with asymptotic 
solution for straight sided specimen with fiber ends exposed 
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This procedure is repeated for the embedded fiber and the curve fit parameters Kf and A,f for 

the FEM solution (valid beyond the point where the two solutions begin to diverge) were 

calculated as 1.452 and 0.1485 respectively, as shown in Fig. 3-8. 

In Table 3-2, we have listed the average stress values calculated over several normalized 

distances for straight-sided specimen in the two geometric configurations. The bond strength is 

then obtained by multiplying the externally applied stress level at which initiation took place 

with the average stress value at the interface. 

10 

o 
O 

CD 
CD 

O 

1.242 (p/r^'02ll+ 0.065 (p/: 0.321 

-»- r 

0.0-1 

log(p/rf) 

Fig. 3-8:      Comparison of hoop stress from finite element analysis with asymptotic 
solution for straight sided specimen with fiber ends covered 
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Table 3-2: Predicted bond strength from straight-sided specimen 

Distance Straight-sided with fiber ends 
exposed 

Straight-sided with fiber ends 
embedded 

V (aee)avg 
Bond Strength (aee)avg 

Bond Strength^ 

0.25 2.52 3042 Psi 
(21.0 MPa) 2.26 4036 Psi 

(27.8 MPa) 

0.5 2.13 2571 Psi 
(17.7 MPa) 1.97 3523 Psi 

(24.3 MPa) 

1.0 1.84 2221 Psi 
(15.3 MPa) 1.75 3120 Psi 

(21.5 MPa) 

* Based on an average applied stress at debonding of 1207 psi 
+ Based on an average applied stress at debonding of 1787 psi 

As shown in Table 3-2, the stress concentration factor calculated at the exposed fiber end (for 

the three averaging distances considered) for straight-sided specimens are higher than the value 

of 1.45 used for earlier predictions8, which resulted in lower estimates of the bond strength of the 

interface. On the other hand, we have demonstrated that the cross-shaped design is successful in 

forcing debond initiation in the interior of the sample (region free of stress singularities) and 

therefore the results produced by testing of such specimens may be capable of providing the true 

transverse response of the fiber-matrix interface. Comparison "of the interface strength value 

(3398 psi or 23.4 MPa) with the predicted strengths in Table 3-2 suggests that 0.5 < p/rf < 1 is a 

reasonably good distance over which stresses should be averaged to obtain an average strength of 

the interface that is representative of the material for straight-sided specimen with fiber ends 

embedded. However, for straight-sided specimen with fiber ends exposed, the predicted strength 

values are lower when averaged over the same distance. One of the possible causes for lower 

strength values is machining induced damage during specimen preparation prior to testing. For 

exposed fiber specimen, the radial stress at the interface peaks at the free edge whereas, for 

embedded specimen, it is at the fiber corner in the interior of the sample. These are precisely the 

locations where failure was found to initiate during testing of straight-sided specimen. Thus, 

surface damage induced during sample preparation will facilitate failure for exposed fiber 

specimen and will have negligible influence on specimen with fiber ends embedded. 
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3o7    Summary 

Careful design and testing of model composites appears to be useful in estimating the normal 

strength of the fiber-matrix interface in unidirectional fiber composites. Two simple specimen 

geometries, namely, embedded fiber and cruciform design, have been considered to remove the 

influence of the free surfaces from tests on traditional straight-sided specimens. Results indicate 

good correlation between experiments and the analytical predictions and demonstrate the 

importance of stress field singularities in controlling damage initiation in straight-sided samples. 

It is further shown that only the cross-shaped design is successful in forcing debond initiation in 

the region free of stress singularities and therefore the results produced by testing of such 

specimens may be capable of providing the true transverse response of the fiber-matrix interface. 

REFERENCES 

(1) Shoufeng, EL, Karpur, P., Matikas, T. E., Shaw, L. & Pagano, N„ J., Free Edge Effect on 

Residual Stresses and Debond of a Composite Fiber/Matrix Interface, Mechanics of 

Composite Materials and Structures, (1996) 

(2) Tandon, G. P., Kim, R. Y. & Dutton, R. E., Micromechanical Edge Effects in Glass Matrix 

Composites , presented at ASME IMECE, Atlanta, GA, Nov 17-22, 1996 

(3) Gundel, D. B., Majumdar, B. S. & Miracle, D. B., Evaluation of the Transverse Response of 

Fiber-Reinforced Composites Using a Cross-Shaped Sample Geometry, Scripta Metallurgica 

et Materialia, 33 (1995) pp 2057-2065. 

(4) Whitney, J. M. & Nuismer, R„ J., Stress Fracture Criteria for Laminated Composites 

Containing Stress Concentrations,Jowr^a/ of Composite Materials., 8 (1974) pp 253-265. 

(5) Tandon, G. P., Kim, R. Y.3 Warrier, S. G., and Majumdar, B. S., Influence of edge effects in 

estimating interfacial normal strength in model unidirectional composites, Proc. Amer, Soc. 

Comp., 12th Tech. Conf, Dearborn, MI, Oct 6-9 (1997) pp 1176-1185 

(6) Bogy, D. B., Two edge bonded elastic wedges of different materials and wedge angles under 

surface tractions, /. Appl Meek, (1971) pp 377-386 

30 



(7) Pochiraju, K. V., Lau, A. C. W. & Wang, A. S. D., A local-global matching method for the 

single fiber pullout problem with perfectly bonded interface, Computational Mechanics, 14 

(1994) pp 84-99 

(8) Tandon, G. P. & Kim, R. Y., Test Methods for Estimation of Interfacial Normal Strength in 

Unidirectional Fiber Reinforced Composites, to appear in Journal of Reinforced Plastics and 

Composites, (1998) 



4.0 INTERFAC1AL NORMAL STRENGTH EVALUATION IN MODEL 
UNIDIRECTIONAL COMPOSITES 

4.1 Introduction 

Failure modes of fiber-reinforced composites are governed by the transfer of stress between 

the fiber and matrix. This transfer occurs across the interface between the constituents, and the 

properties of this interface, therefore, will affect the performance of the composite. The 

properties of the interface are, in turn, dependent upon the processing conditions employed. The 

literature on the characterization of interfaces in fiber-reinforced composites generally reveals a 

heavy emphasis on shear loading of the interface, wherein test methods such as the push-out test, 

the pull-out test, or the fragmentation test are widely employed. Although the shear 

characteristics are important under longitudinal loading, especially in polymer- and ceramic- 

matrix composites, there are a number of scenarios where the normal tensile strength of the 

interface can be more important. One of the most important cases is clearly when loading is 

applied perpendicular to the fiber axis, where a good fiber-matrix bond strength would 

significantly increase the transverse load-carrying capability of the composite. Further, under 

axial loading, Pagano [1] has shown that the tensile normal stress at the fiber/matrix interface 

plays a significant role in debonding the interface for a certain class of composites such as 

ceramic-matrix composites. 

Unlike the interfacial shear strength, the measurement of interfacial normal strength has, to 

our knowledge, received only limited attention. A method that has often been used in the past to 

determine the interfacial normal strength has been to load a straight-sided specimen, with fiber 

A  A A A A 

(a) 

I! 
(b) 

Fig. 4-1: Specimen geometry: (a) straight-sided specimen, and (b) cruciform specimen 
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In order to remove the influence of the free surfaces from the test, a cruciform specimen 

geometry was introduced by Gundel et al [3]. As shown in Fig. 4-lb, the model composite 

sample is in the shape of a cross with an extremely large width in the gage section. Under 

transverse loading, the central portion of the fiber/matrix interface is highly stressed, whereas the 

fiber has negligible loading in the arms/wings. Thus, interface debonding is forced to occur in the 

central region of the cross, so that the estimated bond strength is then free of edge effects. This is 

the major advantage of the cruciform geometry, as has been illustrated quite extensively in 

metal-matrix composites [3] and recently in polymer-matrix [4] and ceramic-matrix [5] 

composites. Alternately, a curved neck specimen [6] (with a reduced cross-sectional area) can be 

used to measure the tensile debonding strength of the interface when subjected to compressive 

loading. Similar to cruciform geometry, failure initiates at the center of the curved neck specimen 

where the stress is a maximum. 

4.2    Experiment 

In this work, model single fiber composite specimens were cast in a cruciform-shaped 

silicone rubber mold. Five different model composites were studied. The composite 

reinforcement consisted of glass, silicon carbide and graphite fibers, while the matrix was an 

epoxy resin (Epon 828 from Shell Chemical Co.) cured with a polyetheramine (Jeffamine D-230 

from Texaco, Inc.) for 3 days at ambient temperature. Curing at ambient temperature eliminated 

thermal residual stresses which are otherwise induced from the mismatch in coefficients of 

thermal expansion of fiber and matrix. The optical glass fiber was obtained from Polymicron 

Technologies Inc. and has an inner core 125 jam in diameter and an outer polyimide layer 5 jam 

thick. In this work, two different silicon carbide fibers were utilized. The 140 jam diameter SiC 

fiber (SCS-0 from Textron) was chosen primarily because of its large size in order to establish 

the various test techniques utilized for detecting debond initiation. On the other hand, the smaller 

diameter (15 jj,m) SiC fiber (Nicalon) was utilized for initial testing on textile sized fibers. 

Finally, AS4 (Hexcel) 7 jim diameter, surface treated and sized graphite fibers and AU4 (Hexcel) 

graphite fibers with no surface treatment or sizing were incorporated into cruciform samples to 

test the interface strength in graphite epoxy specimens. The Glass, SCS-0 and Nicalon fibers 

were simply cleaned with acetone, positioned in the mold and then epoxy resin was cast, around 

them. These fibers had sufficient bending stiffness to support their weight across the mold span. 



However, extra care was necessary when making the graphite fiber samples to insure that the 

fiber was centered through the thickness of the sample. Tension was applied to the graphite fibers 

to prevent sagging in the mold. A schematic of the method of inserting the graphite fiber is 

shown in Fig. 4-2. The fiber was separated from the fiber tow without touching or cleaning the 

portion to be placed in the mold. Not altering the fiber surface was necessary to preserve the 

functionality of the sizing and to simulate actual processing of graphite/epoxy composites« Next, 

the fiber was tacked with wax to a lightweight cardboard UU" shape with a span greater than 21. 

The U shaped fiber holder was placed on the mold, as indicated in Fig. 4-2, such that the weight 

of the cardboard arms placed sufficient tension on the fiber to prevent sagging without breaking 

the fiber. The fiber was then tacked to the rubber mold with wax, the fiber ends snipped, and the 

cardboard removed« 

The two flat surfaces of Glass and SCS-0 specimens were progressively ground to the desired 

thickness, approximately 0.9 mm, while Nicalon, AS4 and AU4 samples were ground to 

approximately 0.5 mm. The surfaces of all samples were then polished using successively 

smaller diameter alumina polishing powder (final size was 0.3 micrometer) in order to enhance 

the microscopic image for interfacial debond detection. In order to prevent specimen failure in 

the grip region, fiber-glass/epoxy end tabs were adhesively bonded on the upright portion of the 

specimen. 

The smaller fiber diameter cruciform samples, namely, Nicalon, AS4 and AU4 samples, were 
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Fig. 4-2: Graphite fiber placement in 
rubber mold 

Fig. 4-3: Sample illumination 
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loaded using a load-frame consisting of a microstepping motor and a square rail, lead screw 

driven positioner. Grip velocity was maintained at 2.5 jam/second. Load was measured by 

sampling a piezoelectric charge transducer at 2 samples/second» The load cell signal was 

conditioned with a dual mode amplifier and digitized with a 16-bit A/D converter. Initiation and 

growth of interface debonds was detected optically by observation of variations in the intensity 

of light reflected from the surface of the fiber during loading. A 768H x 494V, 1/3" chip CCD 

camera and VCR were used to capture a video of the fiber surface at 30 frames/second. The 

sample was illuminated from the camera side as shown in Fig. 4-3. Two fiber optic light guides 

were placed at an angle to the line connecting the camera and the fiber, and the intensity of the 

illumination was adjusted to just below the level necessary to produce a slight shine on the fiber 

surface. The recorded applied loads and video images were then correlated to within ± 0.03 

seconds which corresponds to ± 0.08 |um of applied displacement. 

After completion of the test, a video capture card with accompanying software was used to 

select frames from the video tape record. It was possible to determine if the fiber had debonded, 

what portion had debonded, and to make a measurement of the debond length to within ±0.1 

fiber diameters. The resolution is reported in fiber diameters since the resolution depends on the 

magnification used during imaging. The magnification was adjusted to a level great enough to 

allow debond length to be determined accurately while being low enough to maintain the 

maximum field of view. The tradeoff between field of view and magnification was necessary for 

the best opportunity of capturing the initiation of debonding since the entire gage length could 

not be imaged at once. 

For the larger diameter fiber specimens, namely, Glass and SCS-0 samples, strain gauges 

(gauge length 3.2 mm) were mounted on the flat surface of the matrix directly over the fiber and 

at various positions along the length of the fiber. An acoustic emission transducer was also 

attached to these specimen to monitor failure events. The transducer has an operating frequency 

range of 400 to 1000 KHz with peak sensitivity of 55 dB for the reference input of 1 V/(m/s). A 

polarized microscope was also employed to observe the onset and propagation of microcracks, in 

the form of interfacial debonding, due to applied load in some Glass and SCS-0 specimens. Fig. 

4-4 shows a miniature load frame which has a capacity of 9,000 N with a resolution of 4.5 N. 
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Uniaxial tensile loading was applied to the specimen using this miniature loading device 

(hereafter referred to as straining stage) which was designed and built for in situ observation of 

damage in composite laminates. Axial force was generated by pulling the piston using nitrogen 

gas pressure. The straining stage is designed to be able to be mounted on the microscope stage 

for observation of microcracking or interfacial debond under loading. The specimen was 

mounted on the straining stage and loaded to the level which is slightly lower than the first 

expected debond level. Thereafter the specimen was loaded in increments of 9 N until final 

failure. At the end of each load increment, the load was held constant during which the entire 

Diaphragm 

© 

Fig. 4-4: Portable load frame 

interface was microscopically examined for debonding, and the ensuing fringe pattern captured 

using a polaroid instant camera as well as a 3 5-mm camera. We have not made any effort to 

quantify the fringe patterns. Rather, the emphasis was to identify the location of stress 

intensification where failure would initiate and the stress level at which the fringes first develop 

in the specimen. 

The large fiber diameter specimens (Glass and SCS-0 fibers) were also loaded to failure in an 

MTS machine while strain and acoustic emission activity were continuously monitored. The 

samples were initially loaded to either a prescribed level slightly higher than the expected 

interface debonding level or up to the first occurrence of acoustic emission on the stress strain 

curve« This load was then taken to failure in small increments and the fractured specimen 

examined to identify the locus of failure. 

4.3    Analytical Modeling 

The single fiber-cruciform specimen were analyzed using 3-D finite element analysis 

employing the ABAQUS code [7]. The specimen dimensions along with the notation that we 



have used in this work are shown in Fig. 4-5. Note that the specimen thickness is indicated by "t" 

whereas the wing height is denoted by "2 h". The models were simplified by using symmetry 

planes so that an eighth of the total specimen was required to be modeled. The planes of 

symmetry were constrained by symmetry boundary conditions, whereas the outer surfaces were 

raction free. Due to the large number of elements that were anticipated (because of 3-D 
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Fig. 4-5: Schematic of cruciform sample showing specimen dimensions and nomenclature 

modeling), meshes were generated such that computational efficiency would be maintained 

without sacrificing accuracy. Finer subdivisons were employed in the regions where the stress 

gradient was expected to be high, such as along the fiber-matrix interface. 

The FE model was loaded by applying tension perpendicular to the fiber axis by means of 

constant displacement of the end nodes to simulate clamped-end conditions. Both the matrix and 

the reinforcements were treated as three-dimensional eight-node brick elements The epoxy 

matrix and Glass and SiC fibers were considered to be isotropic while graphite fibers were 

considered as transversely isotropic with the following elastic properties: 

In Table 4-1 the subscripts A and T stand for axial and transverse, respectively. In these 

samples  thermally-induced  stresses were not  anticipated,  since  curing was  done at room 
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temperature1, and therefore were not considered in the analysis. Further, the fiber matrix interface 

was assumed to be perfectly bonded since we wanted to examine the stress distribution in the 

sample prior to damage. 

Table 4-1. Elastic properties of constituents 

Constituents E, Gpa V 

Glass 65 0.25 

SCS-0 400 0.15 

Nicalon 200 0.20 

Epoxy 3.44 0.35 

Constituent EA; GPa ET, GPa VAT 
vTT GAT, GPa 

Graphite 235 14 0.2 0.25 28 

4,4    Results and Disctissioii 

4,4.1 Glass/Epoxy Composite 

Figure 4-6 shows the stress-strain curves obtained from strain gages mounted on the surface 

of the cruciform specimen at different distances from the central loading plane along the length 

of the fiber. The strain gage locations are shown in the inset in Fig. 4-6. 

For the cruciform specimen, the far-field stress is equated to P/(w1t), where P is the applied 

load, wi is the width of the loading arm and t is the specimen thickness. The measured strain 

values indicate that the central portion of the fiber/matrix interface is highly stressed under 

tensile loading, whereas the fiber is nearly unloaded in the arms/wings. This is reflected in the 

lower strain values recorded by strain gage 1 located near the fiber end as opposed to the 

remaining gages 2-4. Moreover, the strain values are nearly uniform in the center over two-thirds 

of the loading region (as indicated by gages 3 and 4) before they decrease with distance 

Chemical shrinkage in room temperature cured epoxies can be significant [8]. However, shrinkage induced strains were neglected in this 
study since no data was available for Epon 828 cured with polyetheramine. A value of .0022 was measured by Beehel and Sottos [8] for 
Epon 828 cured with diethylenetriamine (DETA). Using this value of shrinkage strain for the present system results in compressive 
interfacial radial stress of approximately 7 MPa which, in turn, reduces the reported interface strength by approximately 18 % for SCS-0 
fiber composites. 
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Fig. 4-6: Stress-strain curves at various locations along the fiber length 

measured from the central loading plane. Further, small fillets which were provided at the 

junctions of the cross help in reducing the stress concentration in the matrix at these locations. 

This is evidenced by the lower strain measurement at gage 2 compared to gages 3 and 4 which 

are mounted in the central region. 

Figure 4-7 is a photomicrograph of the fractured halves of two different cruciform specimens 

clearly indicating that failure occurred mostly in the interface. However, for some specimens 

without end tabs, failure occurred at the grip in the rectangular section. 

BlÄlH -&/ ffQ\ 
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Fig. 4-7: Photograph showing failed specimens 
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In order to identify the failure modes under transverse loading, fracture surface analysis was 

next conducted using scanning electron microscopy (SEM). 4-8 shows a typical SEM 

photomicrograph of the fracture surface in the central region of the specimen. The fracture 

surface appears to be relatively smooth which is indicative of failure occurring due to radial 

normal stress alone. On the other hand, a rough (or hackle-like appearance) of the fracture 

surfaces would have been indicative of mixed-mode failure (i.e., failure due to radial normal 

stress in conjunction with shear stress). 

Fig. 4-8: SEM photomicrograph showing the fracture surface 

We also made an attempt to identity the location of stress intensification along the 

fiber/matrix interface where debonding would initiate. Figure 4-9 shows the development of 

photoelastic fringe patterns in the central region of the cruciform specimen at two selected stress 

(a)26.1MPa (b) 32.7 MPa 

Fig. 4-9: Photomicrographs showing photoelastic fringes for the applied stresses 
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levels. The first appearance of photoelastic fringe occurred at the applied stress of 26.1 MPa and 

was confined to a very small area. This small fringe grew in intensity with increasing load, as 

shown at a stress level of 32.7 MPa in Fig. 4-9(b), until failure which occurred at 36 MPa. 

Figure 4-10 is a photomicrograph of the same specimen taken after failure and clearly shows 

that the fiber was separated from the matrix. Thus, under transverse loading, interface debonding 

was the dominant failure mode for single-fiber glass/epoxy cruciform specimens. 

Fig. 4-10: Photomicrograph showing fiber-matrix separation after failure 

4 A2 SCS-0/Epoxy Composite 

4.4.2.1 Interface Strength Measurement 

Figure 4-11 shows the variation of the non-zero stress components in the matrix at the fiber 

matrix interface in the loading direction (i.e., 8 = 0°) as a function of distance from the center of 

the cruciform specimen. These stress components have been normalized with respect to the far- 

field applied stress (aa)? and thus represent the stress concentration factor (SCF), while the 

distance is normalized with respect to the fiber length, 1. 

As seen in this figure, the radial stress at the interface is the dominant stress component and 

remains reasonably constant (within 10 percent) over two-thirds of the loading region. The lower 

value (i.e., 0.9) of radial SCF at the specimen center compared with far field unit value is a result 

of some load shedding into the specimen wings because of their relatively large thickness, h. As 

a consequence, the gradients in the stress profiles shown in Fig. 4-11 across the width, a, of the 

loading arm are less severe compared to our observations in our earlier study on Al/epoxy system 

[9], In a later section, we will demonstrate the effect of varying the width (2 a) of the loading arm 
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Fig. 4-11: Axial variation of interfacial stresses in the matrix 

and the height (2 h) of the wings on the radial SCR More importantly, the present analysis does 

show that the radial SCF approaches zero value in the wings before increasing marginally near 

the free surface indicating the existence of a stress singularity at the fiber end, although the 

singularity is ineffective for the present geometry. Consequently, interface debonding always 

occurs in the central £gage' section in this specimen where the radial SCF is a maximum, thus 

avoiding the influence of end effects on measured debond strengths. This was verified 

experimentally since no debonding was observed before or after loading near the free edges in 

the samples tested. Analytical modeling of the present geometry further indicates that the radial 

stress concentration factor is maximum in the loading direction, i.e, at 9 = 0°, and that is where 

debonding is likely to initiate« Further, there is stress concentration in the matrix region near the 

fillet area. Thus, under loading applied transverse to the fiber axis, failure of the specimen is also 

likely to take place near the fillet region. We will demonstrate in next sub-section how this 

failure behavior can be modified by changing the width of the loading arm and the height of the 

wings. 

Figure 4-12 shows the photoelastic fringe patterns in the central region of a specimen which 

was mounted on the straining stage of the polarized microscope and was incrementally loaded in 

tension to failure. The first appearance of photoelastic fringes occurred at the applied stress of 
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Fig. 4-12. Photomicrographs showing photoelastic fringes for the applied stresses 

42.2 Mpa and was confined to three different regions along the specimen length. The first zone is 

a very small area near the fiber-matrix interface over the top of the fiber while the second zone is 

comparatively larger in size and is below the fiber surface, as seen in the micrographs in Fig. 

4-12. The third zone is symmetric about the position marker with respect to zone one and is 

located to the right of the marker on the top of the fiber surface (but is not within the field of 

view of the micrographs shown). It is speculated that the first and the third zones on the top of 

the fiber surface are the two ends of the interfacial debond crack which has grown along the fiber 

length and circumference and is connected to zone 2. Using 2-D variational analysis, it has been 

shown in a previous study [10] with steel rods in epoxy matrix that the initial debond (caused by 

Gr) propagates only along a portion of the cross-sectional interface and then branches into the 

matrix. The photomicrograph in Fig. 4-12 was taken in the loading plane and if the debond is 

wrapped partially around the fiber circumference, the photoelastic fringes will not indicate a well 

defined crack tip but will indicate just an area of higher stress. The second zone visible in the 

micrograph in Fig. 4-12 therefore represents the partially debonded interface in the cross- 

sectional plane. With an increase in the external stress level, the debond propagates axially along 

the interface. The external stress level at which the crack-tip fringes first appear is interpreted to 

be the applied stress level at debond initiation. 

The model specimens are also loaded to failure in an MTS machine while strain and acoustic 

emission activity are continuously monitored. Figs. 4-13 (a) and 4-13(b) are a plot of the applied 
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Fig.4-13: (a) Applied stress - local strain plot, and (b) Acoustic emission count respectively, for SCS-0/Epoxy 
composite 

stress - local strain response and the acoustic emission count, respectively, for SCS-0/Epoxy 

specimen. On this sample, multiple strain gages are utilized to monitor strain at different 

locations in conjunction with an acoustic emission transducer attached at the center of the 

specimen to detect initiation of debonding. The strain gage locations are shown in the inset in 

Fig. 4-13 (a). 

The first evidence of acoustic emission activity occurs at a stress level of 45.1 Mpa which is 

seen to coincide with the strain jump in response of all three gages, 1-3, placed in the center of 

the specimen. This far-field stress level at the first occurrence of acoustic emission activity 

and/or strain jump is referred as the initial debonding stress. Moreover, the strain values are 
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nearly uniform in the central region as shown by gages 1-3. However, gage 4 which is located in 

the matrix near the fillet region records a much larger strain value relative to the remaining three 

gages. This signifies that there is a region of stress/strain concentration near the fillet area and is 

in agreement with the analytical stress predictions. 

In Table 4-2, we have now listed the applied stress level at debond initiation obtained either 

from first occurrence of acoustic emission or strain jump in the stress-strain curve for several 

different cruciform samples tested on a MTS machine. As shown in Figs 13 (a) and (b), the 

"jump" in the stress-strain curve invariably coincides with the first occurrence of acoustic 

emission activity for samples on which both surface strain and acoustic emission activity 

measurements are conducted. 

Table 4-2. Experimental data from transverse testing of SCS-0/Epoxy composite 

Specimen # 

Applied Stress at Debonding 
(Mpa) Ultimate 

Failure stress 
(Mpa) Strain 

jump 
Acoustic 
emission 

1 47.4 - 52.7 

2 - 40.6 50.7 

3 36.8 36.8 46.3 

4 - 40.7 41.6 

5 37.9 37.9 37.9 

6 47.3 - 54.6 

7 45.1 45.1 48.7 

Mean Value 42.9 40.2 47.5 

Std Deviation 5.2 3.2 6.0 

The mean value of the external stress at which debonding initiates in samples tested on a 

MTS machine is calculated as 42.9 Mpa and 40.2 Mpa using indicators from strain and AE 

measurements, respectively. Notice that these mean values of the debond stress are in good 
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agreement with the stress level at which photoelastic fringes first appear in a specimen which 

was tested on the straining stage of a polarized microscope. 

Figure 4-14 is a photomicrograph of the failed cruciform specimens indicating that ultimate 

failure occurs in the fillet region which is in accordance with the analytical predictions. However, 

for some specimens without end tabs, failure occurs at the grip in the rectangular section. 

Nevertheless, what is interesting to note in Fig. 4-14 is the white line in the central region of the 

two cruciform samples in between the strain gages. This picture was taken with the failed 

samples illuminated by a light source from behind and the white line that we are seeing in these 

images is the light which is passing through the debonded fiber-matrix interface. This 

micrograph is therefore a visual confirmation of fiber-matrix debonding which takes place in a 

cruciform specimen and the length of the illuminated region is a measurement of the extent of 

debonding. 

Fig. 4-14: Photograph showing failed specimens 

Next, we made a section of the failed specimen in the region where we had visually observed 

debonding and examined the cross-section under Scanning Electron Microscope (SEM). It was 

observed [11] that the fiber has clearly separated from the matrix in the region which is very 

close to the loading direction whereas the portion of the interface, which is perpendicular to the 

loading direction, remains bonded. Thus, under transverse loading, debonding does not take 
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place over the entire circumference, but only over some portion of the interface interface and 

supports our hypothesis from the photoelastic fringes observed on the straining stage. As a 

consequence, the fiber remains attached to the matrix when the specimen fails. 

The tensile strength of the interface is determined by multiplying the average value of 

externally applied stress at debond initiation (obtained using indicators from photoelastic, strain 

and AE measurements) with the radial stress concentration factor at the interface and is 

calculated as 36.7 Mpa. This estimated value of bond strength is independent of edge effects 

since we have shown that interface debonding always initiates in the central region of the cross 

away from fiber ends. This middle region is free of initial stress singularities and therefore the 

results produced by testing of these specimens are capable of providing the true transverse 

response of the fiber-matrix interface. 

4.4.2.2. Parametric Study 

While discussing the results presented in Fig. 4-11, we had noted that the radial SCF at the 

specimen center was lower than unity as a consequence of load shedding into the specimen 

wings because of their relatively large height. We had also mentioned that FEM modeling had 

revealed a region of large stress concentration near the circular fillet where the specimen failed. 

To modify the failure behavior observed using the present cruciform geometry, a parametric 

study was conducted in which we changed® the width of the loading arm (2 a) and the height of 

the specimen wings (2 h). 

Figure 4-15 examines the effect of varying the loading arm width on the radial stress 

component in the loading direction, while the height of the wings remains unchanged. Note that 

the loading arm half-width normalized by fiber half-length is indicated as a short vertical dash- 

line on each one of the curves and should not be interpreted as a jump in the SCF value at that 

location. It is found that the radial SCF increases with an increase in the width of the loading arm 

and in the limit we approach the results of straight-sided geometry where failure is dominated by 

the free edge effects [9]. Therefore, while the stress concentration at the interface in the central 

region of the specimen can be significantly increased from its present value of 0.867 by 

increasing the width of the loading arm, there is an optimum width value beyond which stresses 
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evaluated at the fiber end become more dominant in the cruciform geometry. Thus, further 

increase of the width of the loading arm (or shortening of the length of the wings) will become 

counter-productive. 

Figures 4-16(a), (b) and (c), are plots of the radial SCF in the loading direction along the 

fiber length for loading arm half-widths of 3.8 mm, 7.4 mm and 11.2 mm, respectively, while the 

wing height is allowed to vary. It is noted that the stress concentration at the interface increases 

as the height of the wings is decreased. Further, the increase in SCF is larger at smaller values of 

arm widths and the increment in SCF is reduced as the loading arm width increases. Thus, for a = 

7.4 mm and 11.2 mm, there is only a marginal increase in the SCF even though the specimen 

half-height is reduced by one-half from 1.72 mm to 0.86 mm. Therefore, no additional advantage 

is obtained by further reducing the specimen height beyond a certain value. This observation is 

important because it becomes increasingly difficult to fabricate and handle the cruciform 

specimen with decreasing wing height. 
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Fig. 4-15: Effect of loading arm width on the radial stress concentration factor 

The fillet radius of curvature was changed from 6.35 mm to 2.54 mm and .13 mm, respectively, for loading arm half-widths of 11.2 mm and 
13.7 mm. This was necessary in order to maintain a circular fillet for conducting numerical analysis. 
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Table 4-3 summarizes the results of the parametric study for the maximum value of the stress 

component axx in the loading direction at the fiber-matrix interface and in the fillet region, for a 

unit applied stress. For the geometry discussed in Table 4-3, the maximum value of interfacial 

stress occurs at the central plane of the specimen, while in the fillet region, axx is maximum in 

the region at which the circular fillet merges into the straight section of the cruciform wing 

parallel to the loading direction. Recall that the present test geometry is given by h = 6.35 mm 

and a =3.8 mm while the fillet radius of curvature is 6.35 mm. 

Table 4-3. Maximum value of stress component G^ at fiber-matrix interface and in the fillet 
region, for unit applied stress and varying cruciform geometry 

h (mm) a (mm) 
Stress at 

fiber-matrix 
interface 

Stress in 
matrix in 

fillet region 

6.35 

1.9 0.508 1.138 

3.8* 0.867 1.283 

7.4 1.227 1.428 

1.72 

1.9 0.776 1.145 

3.8 1.149 1.278 

7.4" 1.387 1.362 

0.86 

1.9 0,848 1.147 

3.8 1.208 1.272 

7.4 1.409 1.339 

* Original specimen geometry tested 
** Optimized specimen geometry 

As discussed in Figs. 4-15 and 4-16, the maximum value of the interfacial radial stress 

increases with an increase in the width of the loading arm and a decrease in the wing height. On 

the other hand, the maximum value of fillet stress is found to increase slightly with width of the 

loading arm while it decreases slightly with decrease in wing height at the larger value of loading 

arm width. As the half-width of the loading arm increases from its present value of 3.8 mm to 7.4 

mm, and the wing half-height reduced from 6.35 mm to 1.72 mm, the SCF at the interface 

changes from 0.867 to 1.387 while the fillet stress changes from 1.283 to 1.362. Thus, by 

modifying the cruciform geometry, there is a significant increase in the radial SCF at the 
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interface, while there is only a marginal increase in the fillet stress. More importantly, the radial 

stress at the interface now becomes larger than the fillet stress, albeit by a small amount. These 

changes have a significant implication, namely, debonding will now initiate at the interface at a 

lower value of externally applied stress which, in turn, reduces the likelihood of failure in the 

fillet region. Consequently, interfacial failure will now be promoted by optimizing the cruciform 

geometry. This is a very simplistic interpretation of the stress field behavior. It is clear that in the 

fillet area, the stress distribution is influenced by the free edges, whereas, in the interior near the 

interface, a triaxial stress distribution exists. Nevertheless, the trends shown in Figs. 4-15, 4-16 

and in Table 4-3 suggest that the new configuration given by a-= 7.4 mm and h = 1.72 mm, is 

very close to the optimum geometry for SCS-0/epoxy system. By definition, the cruciform 

design which results in the largest value of interfacial radial stress in the interior of the specimen 

and thereby promotes interfacial failure without invoking free edge effects is considered as 

optimum« Moreover, these new dimensions satisfy the constraints imposed by the fabrication 

procedures and test methods. 

To verify that the optimized geometry for SCS-0/Epoxy system would perform better, a 

cruciform specimen was made using the new geometric parameters and loaded to failure in an 

MTS machine. Figure 4-17 is the photograph of the failed specimen and clearly shows fiber- 

matrix debonding in the central region. The debond is seen to propagate along the fiber in the 

loading arm region and then runs parallel to the interface in the matrix. Eventually, the crack 

^^ä^^^^^siÄ 

Fig. 4-17: Photograph of the failed cruciform sample (optimized specimen geometry) 
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front bows away from the interface near the fiber end. Note that even at failure the fiber ends 

remain in contact with the matrix. Thus, in this new cruciform design, free edge effects are not 

large enough to cause failure at the fiber ends while interfacial failure is promoted, as predicted 

by FE analysis. For this particular sample, first occurrence of acoustic emission activity takes 

place at a stress level of 29.8 MPa, which in conjunction with the calculated radial SCF of 1.387, 

results in a debond strength of 41.3 MPa. This value is in reasonably good agreement with the 

average value of the predicted bond strength of 36.7 MPa using the older geometry. The fracture 

surface of the specimen shown in Fig. 4-17 in the central region was also examined under SEM. 

The inspection reveals a smooth fiber surface which is consistent with our earlier assumption that 

the radial stress at the interface is responsible for debond initiation. This new cruciform design, 

therefore, provides valid interface strength which is truly independent of edge effects. 

4.4.2.3 Befoond Length Measurement 

The optimzed cruciform geometry discussed in the previous section was utilized to make 

additional specimens using SCS-0 fibers for debond length measurements [12]. Initiation and 

growth of interface debonds was detected optically by observation of variations in the intensity 

of light reflected from the surface of the fiber during loading. Images showing debond initiation 

and debond growth from a representative test are shown in Fig. 4-18. The fiber in image (a) is 

black except for an area marked "debond" approximately 3.5 fiber diameters long on the bottom 

half of the fiber which reflects light with a greater intensity. The load increases from 193 N in 

image (a) to 252 N in image (d) while the debond grows over 3 mm. Surface defects in images 

(b), (c), and (d) can be used as position markers to compare the changing debond length. 

At a higher magnification additional information can be obtained from the debonding images. 

For example, it-is apparent from Fig.4-19 that the crack front is not straight and perpendicular to 

the fiber axis but has a more complicated curved shape that extends further in the axial direction 

on the bottom of the fiber. As stated earlier, the illumination is set at an intensity such that before 

loading, the fiber surface is on the verge of being shiny. This lighting produces a bright area 

along the approximate centerline of the fiber that is present throughout the test. The reflective 

centerline area is not to be confused with the debond. As illustrated in Fig. 4-19, the height of the 

crack wake can be measured and used to infer the angle, a, that the debond wraps around the 
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Fig. 4-18: Images of debonding in SCS-0/epoxy 

fiber. On average, the value of a for SCS-0/epoxy was measured as 157.4° assuming a 

symmetric debond. Finally, the maximum load at which the sample completely fails can be 

assumed to be the load at which the debond exits the interface. From, the applied load at final 

failure and the analytical modeling, the stress field in the sample can be determined, and the 

debond length and shape are known from the photomicrographs. Thus, all the required 

parameters are known to establish a criteria for the debond kinking out of the interface, which 

will be the topic of a follow on study. 

4*4.3 Nicalon/Epoxy Composite 

Nicalon/epoxy samples were also cruciform tested as a first attempt at testing fibers with a 
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Fig. 4-19: Shape of crack front on SCS-0 fiber surface 
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Fig. 4-20: Debonding in Nicalon/epoxy 

diameter on the order of graphite fibers. Nicalon was chosen for initial studies for two reasons, 

Nicalon fibers can be easily placed precisely in the mold since they are stiff enough to support 

their own weight, and Nicalon fibers have a large transverse stiffness of 200 GPa, thus, 

producing a large normal stress concentration at the interface when embedded in the low 

modulus epoxy. 

Tests on the Nicalon/epoxy system were successful in producing an interface failure using 

the same dimensions as the SCS-0 sample, except for the thickness which was modified (t = 

0.5mm). In each sample one fracture surface contained a channel from the fiber while the other 

contained the exposed fiber. Prior to ultimate failure, debonding was imaged using reflected 

light. The debonds in the Nicalon tests had a distinctly different appearance than in the SCS-0 

tests. As shown in Fig. 4-20, the area of high intensity reflected light is not continuous as in the 

SCS-0 tests but is a series of bright areas in the gage length linked together by darker areas; 

consequently, the moment of debond initiation was less clear. An upper bound for the strength 

of the Nicalon/epoxy interface was measured as 63 MPa. 

4.4,4 Graphite/Epoxy Composite 

Two types of graphite fibers were tested. AU4 fiber from Hexcel is an unsurface-treated and 

unsized fiber that has a surface comprised of weak non-structural carbon. For this reason AU4 

was expected to have a low interfacial strength. Hexcel AS4 fiber was also embedded in epoxy 

and tested. As received, the AS4 fiber has been treated with a solvent to remove the non- 

structural carbon surface, and an epoxy based sizing has been applied which is optimized for 
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adhesion to epoxy. The term "interfacial failure" is defined for the graphite fibers as failure at the 

epoxy/graphite interface (AU4), the graphite/sizing interface (AS4), the sizing/epoxy interface 

(AS4), or within the nonstructural carbon of the fiber (AU4). Madhukar and Drzal [13] tested 

the apparent shear strength of both AS4/epoxy and AU4/epoxy interfaces using the 

fragmentation test and determined that the AS4 interface was significantly stronger than the AU4 

interface. The AS4 interface remained intact beyond loading that produced yielding in the 

epoxy. 

Initial cruciform tests on the graphite/epoxy samples resulted in failure at the fillet instead of 

the desired failure in the gage length. The fillet failures led to a parametric study to determine the 

effect of sample thickness, fiber radius, fillet radius, and fiber transverse modulus — parameters 
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not previously studied by Tandon, et a/.[ll] In Figs. 4-21 thru 4-24 "stress concentration" is 

defined as the maximum interfacial normal stress, and the fillet stress is defined as the maximum 

stress in the loading direction on the fillet (both are normalized with respect to the applied load). 

The plots are based on SCS-0 properties. Figure 4-21 indicates that an increase in t results in a 

larger interface/fillet stress ratio, and Fig. 4-22 shows that a smaller fiber diameter will result in a 

more desirable ratio of interface to fillet stress. The 0.5 mm sample thickness used for the 

graphite/epoxy is near the optimum. Unfortunately, as is shown in Fig. 4-23, a larger fillet radius 

would not significantly improve the interface/fillet stress ratio. The graphite/epoxy samples 

failing at the fillet already had a near optimum fillet radius. Figure 4-24 illustrates the most 

difficult hurdle to overcome when cruciform testing the graphite fiber. The graphite/epoxy 

system has a ratio of transverse fiber modulus (EtT) to matrix modulus (EJ of 4.07 which is well 

below the transition point near Efr/Em = 10 below which the interface stress drops rapidly» 

Because of its low transverse modulus (14 GPa) the graphite fiber does not offer much resistance 

to deformation in the radial direction as the epoxy transfers load from the grips to the interface. 

A large applied load is then required to significantly load the interface. The large applied load 

overloads the fillet and causes fillet failure prior to interface failure. The fillet failure problem 

was resolved by reinforcing the fillet by extending the glass/epoxy tab material used to prevent 

the ends of the loading arms from being damaged by the grips. Each tab was enlarged to cover 

the entire loading arm, the fillets and a small portion of the wings. Figure 4-25 is an image of a 

sample that failed at the fillet, and Fig. 4-26 shows a sample with the reinforced fillets as well as 

a side view schematic of the end of one of the wings. 

glass/epoxy     ^mvmmrp*^^ 

J%5£- 

•epoxy 

Fig. 4-25: Fillet failure Fig. 4-26: Reinforced fillets 
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The graphite fiber samples with reinforced fillets failed in the gage section. Since the 

analysis previously developed did not include the extended tab, the interface strength was not 

calculated for the graphite fiber samples. Interface strengths will be included in a future 

publication based on a modified model. Even though quantitative results are not reported at this 

time, a qualitative difference in interface strength between AU4 and AS4 was established. The 

AS4 samples failed at an average of 30% more applied load than the AU4 samples. The failure 

mode was also different. Figure 4-27 shows a part of the gage section of a failed AU4 sample. 

The AU4 samples failed due to debonding along portions of the gage section while the AS4 

samples failed several fiber diameters away from the fiber. 

interface failure 

fiber .epoxy 

i- i  

Fig. 4-27: Failed AU4/Epoxy 

The interface failure in the AU4 samples and matrix failure in the AS4 samples is consistent 

with Madhukar et al.'s [13] measurement of a low apparent shear strength in AU4/epoxy and a 

relatively high interface strength in AS4/epoxy. The relatively large distance between the failure 

surface and the interface in the AS4/epoxy samples is probably a result of the chemical shrinkage 

of the matrix. Prior to mechanical loading, the matrix material near the interface is in 

compression. Upon mechanical loading, the matrix in the gage section but away from the fiber is 

at a greater tensile stress than the matrix adjacent to the interface. 

4*5    Summary 

It has been shown in this work that the single-fiber cruciform design is successful in 

eliminating the influence of free-edge stresses which are present in transverse testing of 

conventional straight-sided specimens. The experimental part of this study clearly establishes 

that the cruciform geometry is successful in forcing debond initiation in the central region, which 

is free of initial stress singularities, and therefore provides valid interfacial tensile strength data. 
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For Glass/Epoxy composites, inspection of photoelastic fringe pattern and stress-strain 

response indicates that stress intensification takes place mainly in the central loading region, 

while microscopic examination of the failure surface reveals that the radial stress at the interface 

is mainly responsible for interfacial failure. 

For the large diameter SCS-0 fiber, the external stress level at debond initiation has been 

measured using indicators from three different sources, namely, development of photoelastic 

fringes, jump in strain response of surface gages and first significant occurrence of acoustic 

emission activity. It has been shown that the "jump" in the stress-strain curve invariably 

coincides with the occurrence of acoustic emission activity for samples on which both surface 

strain and acoustic emission activity measurements are conducted. Further, the mean values of 

the external stress at which debonding initiates in samples tested on a MTS agree well with the 

stress level at which photoelastic crack-tip fringes first appear in a specimen which is tested on 

the straining stage of a polarized microscope. Fiber-matrix debonding is observed visually as a 

white line (which is light reflected by the debonded interface) in the center of the failed 

specimens. Further, SEM of the cross section clearly shows that the fiber separates from the 

matrix in a region close to the loading direction. Additionally, inspection of photoelastic fringe 

pattern and stress-strain response indicates that the central portion of the fiber/matrix interface is 

highly stressed under tensile loading whereas the fiber carries negligible load near its ends. These 

experimental observations are found consistent with the numerical predictions using 3-D FEM. 

The analysis also reveals that the radial stress at the interface is the dominant stress component. 

Parametric studies on the cruciform dimensions, namely, loading arm width, wing height, sample 

thickness, fiber radius, fillet radius, and fiber transverse modulus yield an optimum configuration 

which promotes ultimate failure at the interface. Further, microscopic examination of the fracture 

surface reveals a smooth fiber surface which is indicative of failure occurring due to normal 

stress alone and is consistent with our use of maximum stress criteria for predicting failure 

initiation. 

It has been further shown that the cruciform test can be used to determine the length and 

shape of the debond as a function of applied load for the large diameter SCS-0 fiber. In addition, 

an interface failure and an image of debonding using reflected light is obtained with smaller fiber 
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diameter Nicalon/epoxy samples. Qualitative differences between an AS4/epoxy and AU4/epoxy 

interface are demonstrated and are consistent with expected differences in normal strength (in 

accordance with published fragmentation results). 

The results reported in this study are a part of our continuing effort to employ the cruciform 

geometry to estimate the tensile normal strength of the fiber-matrix interface in unidirectional 

composites« Such data are critical for establishing design methodologies based on 

micromechanical failure theories so that empirical failure diagrams obtained through extensive 

composite testing can be avoided. 
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5.0 IN SITU OBSERVATION AND MODELING OF DAMAGE MODES IN CROSS- 
PLY CERAMIC MATRIX COMPOSITES 

5.1 Introduction 

Ceramic-matrix composites generally exhibit matrix and/or interface damage well before 

final failure because of the low strain capability of the brittle matrix and weak interfacial bonding. 

These damages have a significant influence on the stress-strain behavior as well as on the ultimate 

strength of the composite. The failure process in a multidirectional laminate is further 

complicated by its dependence on ply orientations and stacking sequence. Reported in this study 

are the results of both analytical and experimental investigations carried out in an attempt to 

understand the initiation and propagation of damage in a [0/90]3s cross-ply laminate. A glass- 

ceramic matrix composite reinforced with silicon carbide (Nicalon) fibers is investigated at room 

temperature under uniaxial tensile loading. The initiation and propagation of interfacial 

debonding, microcracking, and fiber breaks were observed in situ, under applied load using a 

specially built loading device. The observed damage modes were then incorporated into existing 

micromechanical models to predict the laminate stress-strain behavior and compared with the 

experimental measurements. 

5.2 Experiment 

The material system considered in this study is SiC fiber(Nicalon) reinforced glass- 

ceramic matrix (Calcium alumino-silicate or CAS) composite supplied by Corning Incorporated 

in the form of panels. Both unidirectional and [0/90]3s cross-ply laminates are considered in this 

work. The fiber volume content was determined using an image analyzing technique on a square 

specimen with two adjacent edges polished, and its average value for 10 measurements was found 

to be 41 percent with a coefficient of variation of 7 percent. The average specimen thickness was 

approximately 0.1 inch. 

Straight-sided flat specimens were then cut from the panels using a miniature diamond- 

impregnated saw using special care to minimize cutting edge damage. The specimens are 0.3 

inch wide and 4 inch long. Thin glass-fiber end tabs (I inch long) were mounted on both ends of 
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the specimen to protect them from possible gripping damage during loading. One free edge of 

the [0/90]3s specimen was progressively ground and then polished using successively smaller 

diameter alumina polishing powder (final size was 0.3 micrometers) in order to enhance the 

microscopic image for crack detection. An axial strain gage (gage length 3.2 mm) and a 

transverse strain gage were mounted on the mid-surface of the. specimen to monitor strain during 

loading. 

Uniaxial tensile loading was applied to the specimen of [0/90]3S laminate using a 

miniature loading device (referred to as strain stage hereafter) which was designed and built for in 

situ observation of damage in composite laminates. Axial force was generated by pulling the 

piston using nitrogen gas pressure. The straining stage is designed to be able to be mounted on the 

microscope stage for observation of microcracking under loading. The microcracks occurring in 

this class of brittle matrix composites tend to close upon removal of the applied load. This closure 

of the microcracks makes it very difficult to detect them using microscope. The specimen was 

mounted on the strain stage and loaded to a prescribed level which is slightly higher than the 

expected first microcracking level on the microscope stage. This load was held during 

microscopic examination of microcracking by scanning a predetermined area in the polished free 

edge, and capturing the microcracks using the image analysis device. The captured images were 

then transferred to a digital disc for future analysis. This procedure was repeated a few times at 

successive incremental load levels up to final failure. The extension of microcracks as well as 

their multiplication with incremental loading was assessed by observing the subsequently 

captured images. The average value of crack spacing was obtained from 10 measurements for a 

specified load level. Two specimens of a [0/90]3S laminate are monotonically loaded up to failure 

to obtain the entire stress-strain behavior of the laminate. 
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53      Analytical Background 

In this work the large radius axisymmetric damage model by Schoeppner and Pagano [1] 

has been employed in order to approximate the thermoelastic stress field of flat laminated bodies. 

The model is generated by subdividing the body into regions consisting of concentric shells of 

constant length and satisfying Reissner's variational equation with an assumed equilibrium stress 

field within each region. It has been shown that in the limit as the ratio of average cylinder radius 

R to laminate thickness T approaches infinity, the gradient of the hoop strain through the wall 

thickness approaches zero, generating a stress-strain field equivalent to a flat composite coupon 

under a uniform axial strain. The model can be used to examine the initiation, propagation and 

interaction of various idealized damage such as delamination and transverse ply cracking in flat 

laminates containing orthotropic layers. It is assumed that transverse cracks are normal to the 

layer interface and extend the full depth of the ply. Furthermore, free-edge effects are neglected in 

this   2-D model. 

In this work, we consider the effect of transverse cracking and delamination on the 

extensional stiffness and Poisson's ratio of a [0/90]3S cross-ply laminate. Under uniaxial strain in 

the x-direction, while the remainder of the external boundaries are traction free, the longitudinal 

stiffness, EXx> and major Poisson's ratio, vXy9 are defined as 

Exx=f^    and    vxy=-§^ (18) 

where the bar denotes the average value of the stated quantity over the unit cell, and Gij and 8ij 

are the stress and strain components in Cartesian coordinates, respectively. The constituent 

thermoelastic properties used for analytical calculations are given below: 

Ef = 29 Msi vf = 0.25 af = 1.78 x 10"6/°F 

Em= 14.5 MsiVm = 0.25 am= 2.78 x 10"6/°F 
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It is assumed that each constituent is isotropic. Further, E represents Young's modulus, v the 

Poisson's ratio, and a the coefficient of thermal expansion (CTE), whereas  subscripts f and m 

refer the stated quantities to fiber and matrix, respectively. The process temperature difference, 

AT, is assumed to be -1080°F. 

5.4       Results 

5,4.1    Elastic Properties 

The elastic properties of the unidirectional ply were calculated from the constituent properties 

using the NDSANDS model developed by Pagano and Tandon [2].   Comparison of the initial 

elastic moduli between calculation and experiment is summarized in Table 5-1. 

Table 5-1. Elastic properties of unidirectional laminate 

Property Theory Experiment 

Longitudinal modulus, Msi 20.3 19.43 

Transverse modulus, Msi 18.9 17.9 

Major Poisson's ratio 0.25 0.25 

These ply properties are used for subsequent prediction of elastic constants of the [0/90]3S 

laminate using classical laminated plate theory. The experimental results are compared with the 

analytical prediction in Table 5-2. 

Table 5-2. Elastic properties of [0/90]3s laminate 

Propertv Theorv Experiment (Cv) 

Elastic modulus, Msi 19.6 16.91 (4.1) 

Poisson's ratio 0.24 0.20 (12.5) 

Cv: coefficient of variation, % 
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The measured modulus is observed to be lower compared to the theoretical predictions (assuming 

no damage is present) indicating that there could be some processing induced initial damage in 

the cross-ply laminate. 

5.4*2    Damage Progression 

The damage progression in the form of matrix cracking was assessed under incremental 

loading. The microcracks were found [3] to be initiated in the 90 degree layers as a partial 

debond at the interface between fiber and matrix before branching into the matrix. These 

microcracks propagate almost at once across the entire width of the 90 degree ply and link up 

with neighboring plies as the applied stress increases. The development of the transverse crack in 

the laminate at increasing load levels has been documented by Kim and Tandon [3]. Crack 

spacing between two neighboring cracks also decreases as stress level increases and appears to 

reach a saturation value (0.00032 inch) before final failure. Damage mechanisms such as interface 

debonding, matrix cracking, and fiber fracture are responsible for the nonlinear stress-strain 

behavior and continuous degradation of laminate properties. 

5.4.3   Stress-Strain Behavior 

Figure 5-1 shows typical axial and transverse stress-strain relations for the [0/90J3S 

laminate. The axial stress-strain behavior is seen to be linear both in its initial and final stages 

while becoming nonlinear in the transition stage. The transverse strain varies nearly linearly up to 

20 Ksi and thereafter reverses its direction until final failure. This reversal of the transverse strain 

occurs in the nonlinear region of the axial stress-strain relation. 
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Fig. 5-2:     Experimentally measured major Poisson's ratio as function of 
applied stress for [0/90]3s laminate at room temperature 

Figure  5-2 shows variation of major Poisson's ratio as function of applied stress. The Poisson's 

ratio decreases drastically in the transition region of the stress-strain curve (Fig. 5-1) where the 
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transverse strain reversal occurred. Based on the observed progression of damage, we now 

assume the following idealized damage states and calculate the axial modulus (EXx) and 

Poisson's ratio vXy using the large radius axisymmetric model [1]. 

Stage of damage state Exx Yxy 

1. No damage present 19.6 0.24 

2. Complete debonding of fiber/matrix interface 13.2 0.16 
in all 90° plies 

3. Transverse cracking of all 90° plies in conjunction 10.47 0.13 
with damage stage 2(crack spacing 0.00032 inch) 

4. Transverse cracking of either of inner two 0° plies 7.32 0.08 
in conjunction with damage stage 3 

5, Transverse cracking of all plies except outer 3,66 0,04 
two 0° plies 

6, Extension of axial crack(crack length 0.0003 inch)        3,56 0.04 
from the tip of the transverse cracks in damage 
stage 5 

The predicted values of Exx and vXy compare favorably with the experimental results in 

the initial linear region (stage 1) and final (stages 5 & 6) linear regions. In the nonlinear transition 

region (stages 2-4) we are unable to directly compare the predictions with experiment because of 

the inability to distinguish the corresponding damage stages in the present experiment. Further 

work is in progress to identify and capture the growth of dominant damage mechanisms with 

incremental loading in the transition region. 

5.5       Summary 

The initiation and progression of damage in the [0/90]3S laminate of SiC fiber (Nicalon) 

reinforced glass-ceramic matrix (CAS) composite have been investigated under uniaxial tension. 
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Damage mechanisms in the form of fiber/matrix interface debonding, matrix cracking, and 

longitudinal splitting are assessed at each incremental loading. Based on the observed damage 

states, analytical calculations were made to predict change in modulus and Poisson's ratio 

corresponding to the idealized states of damage. The correlation between analytical prediction 

and experimental results is promising. 
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6.0 VARIATIONAL, FEM AND ASYMPTOTIC SOLUTION BEHAVIOR IN THE 
VICINITY OF STRESS SINGULARITIES IN CONCENTRIC CYLINDER MODEL 

6.1 Introduction 

The prediction of micro-mechanical damage initiation and growth in composite materials 

requires accurate stress and deformation analyses. The single fiber, axisymmetric concentric 

cylinder model is widely used for analyzing the thermo-elastic stress field in a composite 

representative volume element and for simulating fiber pullout/push-in experiments. The 

axisymmetric damage model (ADM) [1] was developed earlier to approximate the elastic stress 

field and energy release rates of bodies composed of concentric cylinders containing damaged 

regions either as annular or penny-shaped cracks in the constituents and/or debonds between 

them. The model is generated by subdividing the body into regions consisting of a core and a 

number of shells of constant length and satisfying the Reissner's variational equation with an 

assumed stress field in each region. 

The present effort investigates the ability of this variational method to capture the details of 

the stress field in the vicinity of bi-material cracks and free-edges in the single-fiber 

axisymmetric model. Several example problems such as free-edge (material and geometry 

dependent) singularity, bi-material crack singularity (complex-valued), interface crack 

singularity with debonded portion of the interface sliding under frictional shear (slip- 

displacement direction and coefficient of friction dependent), and penny-shaped crack with 

square root singularity, are analyzed using the variational method, asymptotic analyses with 

William's type [2] stress functions, and with FEM using mesh refinement in the regions of 

singularity. In this study a comparison of the three solutions is presented highlighting the 

distance at which leading terms of asymptotic analysis are dominant and the ability of the FEM 

and variational methods to capture the local radial and angular distributions near cracks and free 

edges. 

6.2 Free-Edge Singularity 

As an example, we will consider the problem of thermal loading of a unidirectional fiber 

reinforced composite in which the classic free edge singularity is encountered. The material 

properties correspond to SiC fiber (E = 410 GPa, v = 0.2) in Borosilicate Glass matrix (E - 63 
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GPa, v = 0.2).   We will assume that the fiber-matrix interface is perfectly bonded and the 

composite is subjected to a unit temperature change (AT = -1°C). 

Traction Free 

, e = rc e=o 

Ve 

z 

P 
e=rc/2 Traction 

Free 

Fig. 6-1: Schematic of a concentric cylinder for analysis 

An asymptotic analysis of this problem reveals the power of the radial singularity, X, equal to 

-0.112. Global stress fields are next computed using Finite Element Methods (FEM) and 

Axisymmetric Damage Model (ADM). In Figs. 6-2 and 6-3, we have compared the angular 

variation of the opening stress, ae0, and shear stress, ape, respectively, from global analyses with 

the asymptotic solution of this problem. The comparison is done at a radium of 0.1 jam and the 

results normalized such that the opening stress is equal to unity at the fiber-matrix interface. It is 

seen from Figs. 6-2 and 6-3 that both FEM and ADM analyses exhibit reasonable good matching 

in the opening and shear stress components for all value of 6. In Fig. 6-4, we have now plotted 

the angular variation of the radial stress component, app. It is seen that the FEM solution (with 

sufficient mesh refinement - logarithmically increasing element sizes from 10"8 m), captures all 

the characteristics of the singular field, whereas ADM (with much coarser layering), is unable to 

predict the jump in the radial stress component at the interface. 
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This is attributed to the fact that in ADM we do not recognize the angular dependence of the 

axial stress at the singular point. Both on the free edges (9 = 0 and 180°) as well as at the 

interface (6 - 90°), the axial (or longitudinal) stress is equated to zero. This is illustrated in Fig. 

6-5, where we have plotted the axial variation of app. While the FEM solution tends to + and - 

infinity (in the limit of mesh refinement), ADM solution returns a value equal to zero at the 

singular point, in accordance with the imposed boundary condition. We have further observed 

that if we compare the angular variation of app at a radium value which is greater than the size of 

zone of dominance of singular region, ADM does predict a jump in the radial stress value at the 

interface. For the matching done at .1 \un9 the global FEM and ADM analyses yield the scaling 

factor as 1.922 MPa-mx and 1.323 MPa-m\ respectively. 

6.3    Closing Remarks 

In this work, a combination of asymptotic, FEM, and Variational methods are used to 

investigate the nature of potentially singular stress fields under arbitrary loading and boundary 

conditions. Asymptotic analysis is used to determine the power of the radial local singularity 

and the angular distribution functions, whereas global stress fields are computed using FEM and 

ADM (Variational) methods. It is shown that FEM, with appropriate (logarithmically increasing 

element sizes from ~10"8m) meshing, captures all the characteristics of the singular field, 

whereas, ADM, with coarser layering, exhibits good angular variation match in two stress 

components (aee, ap0). Deviation from the predicted asymptotic behavior is seen in matching of 

radial stress component (app) with ADM analysis, which is attributed to the imposed boundary 

condition at the singular point. 
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7,0    LOAD   TRANSFER   CHARACTERISTICS   IN   THE   VICINITY   OF   FIBER 
BREAKAGE 

7*1    Introduction 

The single fiber, axisymmetric concentric cylinder model is widely used for analyzing the 

thermo-elastic stress field in a composite representative volume element. When an external 

stress is applied to a single fiber embedded in a matrix, the tensile stress is transferred to the fiber 

through an interfacial shear stress. As the tensile load increases, the tensile strain in the fiber will 

eventually exceed the failure strain of the fiber, and the fiber will fracture as seen in Fig. 7-1. 

a a 

Fig. 7-1:  Schematic illustration of a single fiber fragmentation test 

In this study, the concentric cylinder model has been utilized to evaluate the load transfer 

characteristics in the immediate vicinity of a broken fiber in a unidirectional composite. A 

number of researchers have studied the stress distributions around discontinuous fibers. The so- 

called shear lag analysis is frequently used for analysis of stress transfer between fiber and them 

matrix. However, this simplified approach leads to inaccurate predictions of shear stresses and 

energy release rates [1], By developing sets of recurrence relations, McCartney [2] has extended 

the two cylinder stress transfer model to multiple cylinders and used the technique to study the 

stress transfer behavior when fiber fracture occurs. Using Reissner's variational principle, 

Pagano [3] has developed the axisymmetric damage model to approximate the elastic stress field 

and energy release rates of bodies composed of concentric cylinders containing damaged regions 

either as annular or penny-shaped cracks in the constituents and/or debonds between them. This 

variational model of a concentric cylinder [3] can be easily employed to simulate fiber breakage. 

The prediction of micro-mechanical damage initiation and growth in composite materials 

requires accurate stress and deformation analyses. For the fiber fracture stress transfer problem, 

singularities are encountered for the axial stress in the matrix in the plane of fiber fracture.   In 
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this work, the detailed stress and displacement fields in the neighborhood of fiber break are 

analyzed using the recursive [2] and variational [3] methods, and compared with the asymptotic 

stresses around the crack tip [4] and with other numerical methods such as FEM using mesh 

refinement in the regions of singularity. A comparison of these different solutions is presented 

highlighting the distance at which leading terms of asymptotic analysis are dominant and the 

ability of the approximate elasticity solutions to capture the local radial and angular distributions 

near the crack tip. Also, the assumptions of the more commonly used shear-lag analyses are 

critically assessed. 

12 Problem Definition 

Figure 7-2 is a schematic of the single fiber fragmentation test for analysis. The problem 

consists of cylindrical fiber of radius rf embedded in a concentric cylinder of matrix material of 

radius rm. The fiber axis is assumed to coincide with the z-axis and a crack is assumed present on 

the plane z = 0 within the fiber. Far away from the crack, the fiber is subjected to uniform 

constant displacement, w. The outer radial boundary of the concentric cylinder assemblage is 

considered traction free while symmetry boundary conditions are imposed on the portion of the 

matrix lying in the plane of the fiber break. For this work, we will assume perfect bonding at the 

fiber-matrix interface, although in real-life composites, there are several other micro-mechanics 

phenomenon such as shear yielding of the matrix, interfacial debonding and transverse matrix 

cracking, which are observed in conjunction with fiber fracture. These additional damage 

mechanisms will be treated subsequently. 

13 Results and Discussion 

73.1 Isolated Fiber Break in an Infinite Medium 

Most analyses of stress transfer between a single fiber and a matrix can be classified as 

elasticity analyses, typically based on shear-lag assumptions (e.g., Cox [5]). These analyses 

generally neglect the contribution of radial and shear stresses, misrepresent the interfacial shear 

stress near the fiber break, produce an inadmissible stress state and provide poor estimates of 

stress transfer, especially at low fiber volume fractions. In order to provide an improved 

solution, Whitney and Drzal [6] have used a stress function approach based on the superposition 

of an exact far-field solution with an approximate local transient solution. In this study, we will 
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compare the results obtained from variational analysis[3] with these simpler closed form 

solutions [5,6]. We have used the material properties of Glass fibers (E = 76 GPa? v = 0.25) in 

Epoxy resin (E = 3.22 GPa, v = 0.35), while the composite is subjected to 3% strain for the 

simulation. In Fig. 7-3, we compare the axial variation of interfacial shear stress as a function of 

normalized distance from the fiber break. As mentioned earlier, the shear-lag solution of Cox [5] 

produces a non-zero shear stress at the crack plane. On the other hand, both ADM [3] and stress- 

function approach [6] produce a zero shear stress at the fiber break, but there are significant 

differences in the two stress profiles over distances extending 15 fiber radii (rf). In Fig. 7-4, we 

compare the axial variation of the radial stress at the interface. Here the discrepancy between the 

two solutions is restricted to much smaller distances (approx. 2 rf). The variational solution 

oscillates very sharply near the fiber break because of the presence of singularity at that location. 

Figures 7-5 and 7-6 compare the axial variation of longitudinal stress at the interface in fiber and 

matrix, respectively. Although, all three solutions predict a zero stress value in the fiber at the 

crack plane, clearly there are significant differences in the axial stress distribution extending over 

15-20 rf. The differences are much less severe in the matrix (extending to less than 2 rf), but the 

stress-function approach [6] produces the normal stress with the opposite sign (ADM solution is 

tensile at z = 0). 
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Fig. 7-2:  Schematic of single fiber fragmentation test for analysis 
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7.4    Concluding Remarks 

The comparisons which we have provided in Figs. 7-3 thru 7-6 serve to illustrate the nature 

of the differences in the numerical stress predictions and hence stress transfer distances between 

simplified and more sophisticated analyses. As observed, the differences are confined mainly at 

the fiber end where the stress field is dominated by the presence of the singularity. We have also 

done exhaustive comparison of the variational results [2,3] with FEM solution and local 

asymptotic analyses [4] near the fiber break for both isotropic and transversely isotropic fibers 

which will be discussed in a manuscript currently under preparation. 
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8.0 STRESS CONCENTRATIONS AT FIBER CORNERS DURING TRANSVERSE 
TENSION OF UNIDIRECTIONAL COMPOSITES 

8.1 Introduction 

The transverse tensile strength (bond strength) of the fiber-matrix interface plays a key role in 

governing the properties of fiber-reinforced composites [1], since it affects both the transverse 

and longitudinal properties of the composite. Among techniques that are used to characterize the 

transverse bond strength, the most common one is to load a straight sided 90° specimen (Fig. 8- 

la) and identify initiation of debonding either from the onset of nonlinearity in the stress-strain 

curve, or from surface replicas obtained from the edges of the sample under load. 

Previous work on titanium matrix composites (TMCs), consisting of single SiC fibers 

embedded in a T1-6A1-4V matrix showed that the replica approach failed to provide any 

distinction in the bond strength for a wide array of fiber coatings (including uncoated and carbon 

coated fibers) [2], Stress concentrations at the exposed fiber corners were believed to be 

responsible for the low strengths, and failure initiation at the edges were also verified using an 

ultrasonic shear wave detection technique. A solution that was proposed in order to obtain valid 

bond strength data was to use a cruciform shaped geometry, as illustrated in Fig. 8-lb[3]. In this 

geometry, the fiber ends are unloaded, and fiber-matrix debonding is forced to occur in the 

central region of the cross, i.e., edge effects are avoided. 

In subsequent work, experiments were conducted on a model Al-fiber/epoxy system, to allow 

visual observation of the debonding process [4], In addition to the exposed fiber and cruciform 

geometry, an embedded fiber geometry (Fig. 8-lc) was also chosen, based on considerations of a 

lower value of stress concentration. Experiments showed that the applied stress at debonding 

was highest for the cruciform geometry, and lowest for the exposed fiber geometry, with an 

intermediate value for the embedded geometry. Fracture surfaces revealed that indeed the lower 

strengths were associated with failures initiating at the fiber corners. 

8.2 Asymptotic Analysis 

We have now completed a 2-D asymptotic analysis, and combined it with 3-D finite element 

method (FEM) to obtain the full-field solution for the normal stresses at the interface under 

transverse loading. This is similar to the approach adopted by Pochiraju et al. [5] for a push-out 
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Fig. 8-1: Geometry of test specimen 

problem, where they relied on the Muskhelishvilli-Kolosov complex potential theory to evaluate 

the local stresses. The rationale here is to obtain a quantitative assessment of the effects of fiber 

corners on interface failure, and to compare with experimental data. The asymptotic analysis 

adopted here is fashioned after the work of Bogy [6], whereby a Mellin transform is used to solve 

the bi-harmonic equation for the Airy stress function (cp ), namely, V4(p;. = 0, where i is either 1 

or 2, depending on the two materials. The boundary conditions satisfy displacement and stress 

continuity at the interfaces, as well as the free-surface stress condition (for the exposed fiber 

specimen). For both the exposed and embedded fiber specimens, one obtains a set of 8 

homogeneous equations in 8 unknowns, the latter being the constants that govern the angular 

variation of stresses: Aij(s).xj(s) = 0. Here s is the Mellin transform parameter, and a non-trivial 

solution, sm, is sought in the domain -2 < Re(Sm) < 1. We have used the singular value 

decomposition method to solve the homogeneous equations, and stresses were obtained in the 

form: 

where p is the distance of a field point from the fiber corner, and K^s are undetermined 

constants, to be obtained by angular matching with the 3-D FEM solution at one or two values of 

p, depending on whether there are one or two eigenvalues, Sm, respectively. 
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8o3    Angular Variation Matching 

For the exposed fiber geometry (Fig. 8-la) in the case of the Al/epoxy system, only one 

eigenvalue and one eigen function was obtained, such the order of the singularity was, A,=sm+2 = 

0.278. Figure 8-2 illustrates the angular matching between the asymptotic and FEM results, the 

matching being performed at a value of p/rf of 0.0773, where rf is the fiber radius. In the case of 

the embedded fiber geometry, the problem was significantly more complicated by the presence 

of two roots, Si = -1.789 and S2 = -1.679. Moreover, for s{ = -1.789, there were two 

eigenfunctions, \\fx and \|/2. Physical considerations indicated that only one \|/ was valid, and the 

resultant matching with FEM results are illustrated in Fig. 8-3. 
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Fig. 8-2: Angular matching for the exposed fiber specimen 

8*4    Stress Scaling Factor 

Based on the full-field solution, the stress concentration factors were averaged over one rf 

distance from the fiber ends. For the embedded fiber geometry, this averaging produced an 

effective bond strength that was in close agreement with the data from the cruciform geometry. 

For the exposed fiber specimen, the strength was still lower, and suggests that this geometry is 

unsuitable for fiber-matrix bond strength characterization. 
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Fig. 8-3: Angular matching for the embedded fiber specimen 
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9.0 ANALYSIS  OF THE END-NOTCHED FLEXURE SPECIMEN FOR MODE II 
TESTING USING VARIATIONAL METHODS 

9.1 Introduction 

A major source of failure in laminated composites is delamination along ply interfaces. An 

understanding of this behavior resides in an accurate characterization of the interlaminar fracture 

toughness. Tests for characterizing delamination include the double cantilever beam (DCB) for 

measuring the Mode I energy release rate, Glc, the end-notced flexure (ENF) specimen for 

measuring the Mode II energy release rate, GIIc, and the end-loaded split (ELS) specimen for 

mixed-mode measurements. 

The ENF specimen consists of a beam subjected to three-point bending with a mid-plane 

starter crack of desired length introduced at one end as shown in Fig. 9-1. A Mode II critical 

potential energy release rate is then determined by measuring the load and center deflection at the 

instant the starter crack propagates. Early analysis of the ENF specimen was based on simple 

beam theory solution by Russell and Street [1]. The beam theory solution was modified by 

Carlsson et al [2] to include the influence of interlaminar shear deformation. Subsequently, a 

higher order beam theory based on Reissner's variational principle was developed by Whitney 

[3] and the resulting field equations applied to the analysis of the ENF specimen. Additionally, 

Finite Element Analysis (FEA) of the ENF specimen has been performed by a number of 

investigators (e.g., [4 - 7]). In each of these studies significant departure from beam theory is 

observed over a range of values of crack length. The purpose of this study is therefore to assess 

the accuracy of the various solution techniques available in the literature for the analysis of the 

ENF specimen by using a more rigorous elasticity model. 
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Fig. 9-1: Schematic of End-Notched Flexure Specimen 
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92    Methodology 

In this work the ENF specimen is analyzed using the large radius axisymmetric damage model 

developed by Schoeppner and Pagano [8]. It has been shown that in the limit as the ratio of 

average cylinder radius R to laminate thickness T approaches infinity, the stress components and 

the governing equations of the large radius model are analytically equivalent to the flat laminate 

formulation. Using this methodology, an axisymmetric cylinder with R » T is used to represent 

a flat laminate. Typical values of R/T used are in the range of 104-105. 

The Large Radius Axisymmetric Model (LRAM) is capable of handling discrete damage in 

the form of edge delamination, internal delamination and/or transverse cracking in flat laminates. 

Further, the material properties could be discontinuous across the laminate thickness, i.e., plies 

with different orthotropic material properties could be assembled in the thickness direction. This 

model was therefore ideally suited for the analysis of the ENF specimen. Figure 9-1 shows the 

configuration of the specimen with a through-width delamination at one end of the specimen. As 

shown in Fig. 9-1, a is the delamination length measured from the support, 2L is the specimen 

span, 2b is the width, and 2h is the thickness. Figure 9-2 shows the boundary conditions which 

were applied for LRAM and the coordinate convention, where z is along the specimen length and 

r is in the thickness direction. The concentrated load was simulated by a uniform distribution of 

radial stress, ar, over a small length, such that the resultant of the stress distribution was 

equivalent to the applied load. Similarly, the pin support reactions were simulated by 

constraining the radial displacement over a small support length while the shear traction was set 

equal to zero on all external boundaries. The computed potential energy release rate is sensitive 

to the support distance utilized in the analysis. Convergence studies were done by considering 

the support distance as a parameter until further variation resulted in negligible changes in the 

computed energy release rate values. Further, a pure mode II condition was simulated by 

constraining the crack faces to displace equally in the radial direction while smooth contact was 

maintained. The radial stress along the crack surfaces was found to be either compressive or 

very close to zero, as discussed later. For rigorous analysis friction needs to be considered. 

However, previous finite element solutions [5 - 7] have indicated that the effect of friction is to 

lower the energy release rate values, in general, by a small amount.   Therefore, in the present 

85 



a = -1,T    = 0 

CTz = Trz = °^ >^az~ Trz~  *-z 
= \z=0 

0 

X   A 
ur= xrz= ° °r/= °. Trz = ° 

Hi 

ur 

Fig. 9-2: Boundary conditions for analyzing ENF specimen 

analysis, friction is neglected, i.e., smooth delamination faces are assumed. 

The analytical model is generated by subdividing the body into regions consisting of a 

number of shells of constant thickness and length and satisfying the Reissner variational equation 

(1) with an assumed stress field in each region. That is, we set 

67 = 0 (1) 

where J   = { F dV  -       T; U4 dS m I      L (2) 

and F = Lxü(Uij +Uj,i)-W(Tijseij) 

In these equations, W is the complementary energy, x{j and U{ are the stress and displacement 

components, respectively, in Cartesian coordinates, e^ are the mathematical free expansional or 

non-mechanical strains, V is the volume enclosed by surface S, S is the part of S on which one 

or more traction components are prescribed and T{ are the Cartesian components of the 

prescribed tractions. Further, a comma followed by a subscript(s) implies differentiation with 

respect to the appropriate coordinate(s) and the summation convention is understood. The 

regions are selected such that the thermoelastic properties are constant and the boundary 

conditions do not change character on any of the bounding surfaces within each region. 

Reissner [9] has shown that the governing equations of elasticity can be obtained as a 

consequence of the variational equation provided both stresses and displacements are subject to 

variation in the application of (1). The stress field is assumed such that azz and aee are linear in r 

within each region, while the forms of an and arc are chosen to satisfy the axisymmetric 
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equilibrium equations of linear elasticity. The form of the boundary condition equations derived 

from the variational principle is given by Schoeppner and Pagano [8]. The general form of the 

solution for any of the dependent variables P(z), namely, the stresses and weighted displacement 

components, is expressed by 

P(z) = 5>ie*z+Pp(z) (4) 
i 

within each constituent where Ai are constants, X{ are eigenvalues of a determinant, and Pp(z) is 

a particular solution, which in the present case is a simple polynomial The number of regions, 

in particular in the radial direction, can be increased in order to improve the solution accuracy. 

The potential energy release rate G then, is defined as 

G = -dn/dA (5) 

where P is the potential energy U - W, U is the strain energy, W is the potential energy of the 

prescribed tractions, and dA is the crack extension area. For analysis of the ENF specimen using 

LRAM, the potential energy release rate is evaluated directly using differentiation since the 

solution to the boundary value problem has an explicit exponential dependence along the crack 

length (see Eq. 4). The potential energy release rate can also be computed using various other 

techniques such as the virtual crack extension or virtual crack closure method. Numerical 

calculations for several geometry and material property combinations resulted in small 

differences between the various approaches. 

93    Numerical Results and Discussion 

As a numerical example, we consider the following case, 

Ei = 115.1 GPa, E3 = 9.7GPa, G13=4.48 GPa, v13=0.3 and L/h-22.4 

where 1 is the fiber direction aligned along z-axis and 2-3 is the transverse plane. These numbers 

are typical of graphite/epoxy unidirectional beams utilized in the ENF specimens. For analysis, 

the half-depth h is assumed equal to 1.7 mm while the beam half-span is taken equal to 38.1 mm. 

In Fig. 9-3, we have compared the Mode II potential energy release rate for various crack-length- 

to-semi-span ratios with available solutions [2-5, 23] from the literature. The reported values 

have been normalized with respect to the classical beam theory solution given by Russell and 
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Street [1], namely, 

2  r>2 
GBeam theory 

ii 

9a'P 

64 E, b2 h3 (6) 

where E, is the effective bending modulus in the axial direction. This equation was modified by 

Carlsson et al [2] to include the effect of transverse shear deformation 

/-,CGP Gn    = 
9 a2 P2 

64 E, b2 h3 1 + 0.2 
fu\ 

va; VGi3 7 
(7) 

and subsequently improved by Whitney [3] using a higher order beam theory, where 

iW 9a2P2 

!l + -U 
64E,b'hJi|      2a    6022a 

X2 + 60 (8) 

A = 4   HSl 
\  5E, 

L = L/h    and     a = a/h (9) 

Gn = 
9a2P2 

64 E, b2h3 1 + 0.13 
vGi3y 

1/2 

(10) 

Note that Eqs (8) and (9) reported in [3] have been corrected for their typographical errors. 

By comparing exact and approximate solutions of elastic laminates, Chatterjee [10] has derived a 

closed form expression for common graphite/epoxy composites 

As seen in Fig. 9-3, the approximate shear deformation beam theory [2] yields up to 9 % 

lower Gn values whereas, the higher order beam theory [3] overestimates the results by up to 7 % 

for a/L > 0.2. For smaller values of crack length, the differences are even larger. It is found that 

both the classic beam theory solution [l] and the results of present analysis converge to zero 

value of energy release rate in the limit of infinitesimal crack length. However, both the shear 

deformation beam theory [2] and higher order beam theory [3] do not converge to zero value of 

energy release rate in the limiting case of zero crack length. Excellent agreement is seen between 

the results of present analysis and the finite element solution of Salpekar et al [4] using eight 

node isoparametric, parabolic elements.   The smallest value of a/L reported, however, was 0.2. 



(The finite element solution of Salpekar et al [4] was independently recovered by our own finite 

element analysis). Also, He and Evans [7] have reported good agreement between their finite 

element analysis using singular crack tip element and the results reported by Salpekar et al [4]. 

The approximate elasticity solution developed by Chatterjee [10] differs by less than 1 % for a/L 

> 0.1. On the other hand, the finite element results obtained by Gillespie et al [5] display a large 

discrepancy versus the other approaches. Furthermore, their results show an increase in 

normalized value of Gn with increasing values of a/L, while the other results show the opposite 

trend. Finally, note that all the solutions shown in Fig. 9-3 differ considerably from the classic 

beam theory solution [1] for short crack lengths. 

\ \    Carlssonetal, 1986 
•   Salpekar et: al. 1988 

"A--Gillespie et al, 1986 

Graphite/Epoxy 

L/h = 22„4 

Fig. 9-3: Comparison of Gn from various analyses 

Additionally, the deflection under a unit central concentrated load is equal to the compliance 

of the specimen. The compliance values predicted with LRAM, finite element analysis and those 

from the shear deformation beam theory are presented in Fig. 9-4. Again, all the reported values 

have been normalized with respect to the classical beam theory solution [1], 
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As seen in Fig. 9-4, the results of the present analysis agree with the finite element solution 

of Salpekar et al [4] reasonably well, while the beam theory solutions [2,3] differ considerably. 

Next, we consider the beam to be a homogeneous isotropic material.    This problem is 
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appropriate to study the mode II response of adhesively bonded specimens [11] provided the 

bond-line thickness is sufficiently small. A parametric study investigating the influence of 

delamination length, span, and thickness was conducted using the material properties of 

aluminum (E=72.4 GPa, v=0.33). Results from LRAM were independently verified by 

performing finite element analysis of the ENF specimen using ABAQUS [7] with second order, 

plane strain isoparametric (CPE8) elements. The crack faces were modeled using second order 

plane strain frictional interface (INTER3) elements. The interface elements could sustain only 

zero (in the case of an open crack) or compressive normal stress, on, while the shear stress, x^, on 

the crack face was set equal to zero by using a zero coefficent of friction. 

The finite element mesh designed for the ENF problem is shown in Fig. 9-5a. The regions 

surrounding the two bottom supports, the top loading point, and the crack tip were densely 

meshed, since the stresses changed rapidly with position in those areas. Typical meshes 

contained 2000 to 2500 elements with the larger meshes (2500 elements) required for models 

with a larger h. The focused mesh about the crack tip (see Fig. 9-5b) was held constant for all 

problems. The elements adjacent to the crack tip were 10 \xm long which corresponds to a range 

of 0.02% - 0.17% of the crack length depending on the crack length modeled. The mesh density 

was considered adequate when further refinement of any portion of the model resulted in less 

than a 0.1 % change in the energy release rate. Since friction was not modeled on the crack 

surface, the energy release rate could be calculated by obtaining the J integral. For computations 

we used 8 contours where each successive contour had an average radius about the crack tip of 

one element length greater than the last contour. The values for the outer 6 contours were 

consistently within 0.01% for all problems investigated. 

Figure 9-6 shows the variation in normalized Mode II potential energy release rate with 

normalized crack length for two different values of span-to-thickness ratio, namely, L/h = 4 and 

22.4, the latter was the case examined earlier using the material properties of unidirectional 

graphite/epoxy composite. Reasonably good agreement is obtained between LRAM and FEM 

analyses for all cases considered, which gives us confidence in the reported solutions. However, 

it is seen that for L/h equals 22.4 (where h=1.7 and L=38.1 mm), the disparity between the 

present analysis and the beam theory solutions is greater if the beam is considered to be a 
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homogeneous isotropic material, e.g the shear deformation beam theory [2] and the higher order 

beam theory [3] now overestimate the results by up to 10 % and 15 %, respectively, for a/L > 

0.2. Further, the present analysis predicts GM values which are lower than the classic beam 

theory result [1] in this range of crack length for L/h=22.4.   On the other hand, for the lower 

(b) 

Fig. 9-5: ENF mesh and close up of focused crack tip mesh 

span-to-thickness ratio, namely, L/h =4, the present solution is found to be larger than the classic 

beam theory solution [1], while greater differences are obtained between the present analysis and 

modified beam theory solutions [15, 16]. These reported comparisons of potential energy release 

rate calculations, therefore, serve to establish the limits of applicability of beam theory 

expressions for analyzing the end-notched flexure specimen. 

We also consider the interfacial stresses acting on the crack surfaces to explore the conditions 

under which the ENF specimen represents a pure Mode II response. As an example, we show in 

Fig.9-7 the interfacial stresses ar and xrc across the specimen length in the crack plane. We have 
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used the material properties of Aluminum with a = 19.3 mm,.h=L7 mm and L=38.1 mm for 

these calculations. Results from LRAM are compared with the finite element solution and show 

excellent agreement with each other. This is particularly significant in view of the fact that we 

had slightly different boundary conditions on crack surfaces for the two analyses. The shear 

stress was prescribed equal to zero in both solutions. However, in LRAM the crack faces were 

constrained to displace equally in the radial direction, thus, allowing for no crack opening, 

whereas, in finite element analysis, the radial stress determined whether the interface was in 

contact or open. Notice that the radial stress component is nearly zero along the mid-plane 

except near points of singularity or directly underneath the load nose. The variational model, 

LRAM, predicts a small tensile value of radial stress near the left end support which may be an 

artifact of the solution technique (notice that a similar peak is observed near the other support in 

both the solution techniques). The shear stress is singular at the crack tip with the characteristic 

inverse square root type singularity, although neither method explicitly recognizes the 

singularity, and is nearly uniform along the   bonded portion of the specimen length.    The 
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reported comparisons of the stress distributions shown in Fig. 9-7 give us confidence in using the 

ENF specimen to evaluate the mode II toughness of the interface. Similar stress distributions 

were obtained [12] for other crack length values, specimen dimensions and material properties 

utilized. 

Gr 

0.25 

- -0.25 

-0.5 

■0.75 

10 20        30        40 50        60 70 80 

Z (mm) 

Fig. 9-7: Interfacial stresses across the specimen length in the crack plane 

9.4 Summary 

The end-notched flexure (ENF) specimen is analyzed in this study using LRAM and finite 

element analyses. An examination of the interfacial stresses acting along the crack surfaces 

reveals that the ENF specimen represents nearly a pure Mode II response if the crack surfaces are 

in smooth contact. Various approximate solutions available in the literature are assessed for their 

accuracy using the properties and dimensions of typical graphite/epoxy unidirectional beams. 

The results of the present analysis are seen to agree very well with the finite element solutions of 

Salpekar et al [4], He and Evans [7], and an approximate elasticity solution by Chatterjee [10]. 

However, both the shear deformation beam theory [2] and higher order beam theory [3] 

overestimate the Mode II energy release rate with the differences being larger at shorter crack 
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lengths. The discrepancies are even greater if the beam is considered as a homogeneous isotropic 

material (such as in the study of mode II response of adhesively bonded specimens [11] where 

the bond-line thickness is sufficiently small). These reported comparisons of potential energy 

release rate calculations therefore serve to establish the limits of applicability of beam theory and 

other approximate expressions for analyzing the ENF specimen. 
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10.0 CHARACTERIZATION OF INTERFACIAL FRACTURE TOUGHNESS IN 
MODEL POLYESTER / EPOXY COMPOSITE SYSTEM 

10.1 Introduction 

The objective of the present study is to evaluate interfacial fracture toughness in a 

polyester/epoxy composite system. This model system was recently investigated by Bechel and 

Sottos [1] and Tandon and Pagano [2] in a push-out test. In [2], the apparent debond toughness 

of this composite system was defined using energy balance arguments during a critical finite 

crack extension. It was shown that as the debond propagates along the fiber-matrix interface, the 

force/displacement can be predicted by meeting the critical shear energy release rate criteria 

(GT= GTC9 see [2] for further details). The aim of the present study is to provide an independent 

measure of the Mode II toughness of the polyester/epoxy interface and to correlate the fracture 

toughness value with the push-out data. To this effect, we have used the end-notch flexure 

(ENF) specimen as shown in Figure 10-1. In this test method, Mode II critical potential energy 

release rate (GIIc) is determined using the load at the instant the starter crack propagates from the 

load-deflection data. 
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Figure 10-1.   Schematic of End-Notched Flexure Specimen 

10.2 Specimen Preparation And Testing 

Model End-Notched Flexure specimens, consisting of polyester and epoxy rectangular plates 

(.01 inch thick) sandwiched between composite adherents (.09 inch thick), with a non-adhesive 

insert on the interface (mid plane) as a starter crack, were cast in a silicone rubber mold. The 

three-step process for fabricating the test specimens is illustrated in Fig 10-1. In step 1, the 

epoxy resin (Epon 828 from Shell Chemical Co.) is cured with polyetheramine (Jeffamine D-230 
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from Texaco, Inc.) for 72 hours at ambient temperature between risers placed on top of a quasi- 

isotropic plate of AS4/H3501-6 composite, which serves as a stiff adherent. Curing at ambient 

temperature eliminates thermal residual stresses that are otherwise induced from the mismatch in 

coefficients of thermal expansion. In step 25 a teflon insert approximately 1 inch long is placed 

on the cured epoxy plate at one end of the specimen. Finally, in step 3, risers are placed on top 

of the epoxy plate and polyester resin is poured within the mould and cured for 24 hrs at room 

temperature along with another composite plate on the outside. 

zc bpoxy E2 
Composite plate 

Step 1 

fzn Epoxy iz 
Composite plate 

Step 2 

Composite plate 
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EzPOXV 

E YZ 
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Step 3 

Figure 10-2.   Three-step process for fabricating ENF specimens 

A three point bending fixture with a total span of 5 inches is then installed in a load frame 

and tested in a displacement control mode. Crack propagation in the ENF specimen generally 

tends to be unstable. In this work it is found, in majority of the test specimens, that the use of 

composite adherents on the outside prevents the starter crack from jumping from the mid-plane 

to the outer interface while crack propagation is limited along the polyester/epoxy interface. 

Loading is interrupted when the applied load reaches a maximum. At this point, the starter 

crack propagates up to an inch along the interface. The load-deflection response shows some 

non-linearity. For each test specimen, the point of crack initiation is defined by the crossing of 

the load-displacement curve with the slope at origin minus 5 % as shown in Fig 10-3. This offset 
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method is utilized in this study for identification of critical load at the instant the starter crack 

propagates. 

/ /   ^5%offset 

► Displacement, in 
^i    §c   5max 

Fig. 10-3: Schematic of a typical load-displacement response from the test. 

10.3 Analytical Modeling 

Early analysis of the ENF specimen was based on simple beam theory solution by Russell 

and Street [3]. The beam theory solution was modified by Carlsson et al [4] to include the 

influence of interlaminar shear deformation. Subsequently, a higher order beam theory based on 

Reissner's variational principle was developed by Whitney [5] and the resulting field equations 

applied to the analysis of the ENF specimen. These analyses are however restricted to 

homogeneous orthotropic beams. In this study, the end-notch flexure specimen is analyzed using 

the large radius axisymmetric damage model (LRAM) by Schoeppner and Pagano [6]. It has 

been shown that in the limit as the ratio of average cylinder radius R to laminate thickness T 

approaches infinity, the stress components and the governing equations of the large radius model 

are analytically equivalent to the flat laminate formulation. The variational model [6] is also 

capable of handing the material variation (or discontinuity) across the beam thickness and is 

capable of handling discrete damage in the form of edge delamination, internal delamination 

and/or transverse cracking in flat laminates. This model was therefore ideally suited for the 

analysis of the proposed ENF specimen. For modeling purposes, the concentrated load was 

simulated by a uniform distribution of radial stress, ar5 over a small length, such that the resultant 
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of the stress distribution was equivalent to the applied load. Similarly, the pin support reactions 

were simulated by constraining the radial displacement over a small support length while the 

shear traction was set equal to zero on all external boundaries. Further, a pure mode II condition 

was simulated by constraining the crack faces to displace equally in the radial direction while 

smooth contact was maintained. 
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Fig. 10-4: Contact stresses along specimen 
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We first consider the contact stresses acting on the crack surfaces and along the crack plane 

to explore the conditions under which the ENF specimen represents a pure Mode II response. 

Figure 10-4 shows the variation of the normal and shear stress components along the specimen 

length in the crack plane. For the results shown in Fig. 10-4, the crack length, a, was set equal to 

1 while the specimen length between supports, 2 L, was equal to 5. Notice that the normal stress 

component is nearly zero along the mid-plane except near points of singularity or directly 

underneath the load nose. The variational model predicts a small tensile value of radial stress 

near the left end support which may be an artifact of the solution technique (notice that a similar 

peak is observed near the other support). The shear stress is singular at the crack tip with the 

characteristic inverse square root type singularity, although the variational method does not 

explicitly recognizes the singularity, and is nearly uniform along the bonded portion of the 

specimen length. The stress distributions shown in Fig. 10-4 therefore give us confidence in 

using the ENF specimen to evaluate the mode II toughness of the interface. 
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Next, the variational method is utilized to evaluate the potential energy release rate. This 

computation is performed directly using differentiation of the potential energy since the solution 

to the boundary value problem has an explicit exponential dependence along the crack length. 

The computed potential energy release rate is sensitive to the support distance utilized in the 

analysis as shown in Fig. 10-5. Convergence studies were done by considering the support 

distance as a parameter in conjunction with layer refinement to improve the solution accuracy 

until further variation resulted in negligible changes in the computed energy release rate values. 
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Fig. 10-5: Variation in potential energy release rate with support distance and layer refinement 

Figure 10-6 shows the comparisons for various crack-length-to-semi-span ratios (ranging 

from 0.1 to 0.9) with the beam theory equations under a unit applied load. The comparative 

solutions using beam theory equations (1-3) were obtained using rule of mixtures computed 

effective modulus. The reported comparisons of potential energy release rate calculations serve 

to establish the limits of applicability of beam theory expressions for analyzing the end-notched 

flexure specimen using homogenized beam modulus. 

10.4 Experimental Results 

As mentioned earlier, crack propagation  in the ENF specimen generally tends to be unstable. 
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Figure 10-7 is a schematic of the various failure paths observed [7] in the 3-point flexure testing 

of polyester/epoxy composite system. As shown in Fig.l0-7a, the use of composite adherents on 

a 
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Fig. 10-6.   Variation of Gn with crack length 

the outside prevents the starter crack from jumping from the mid-plane to the outer interface 

while crack propagation is limited along the polyester/epoxy interface. This is the desirable 

failure mode since we are interested in evaluating the toughness of the polyester/epoxy interface. 

Majority of the specimens tested in this study fail in this particular manner. However, specimen 

failure is not always restricted to this configuration alone. Figures 10-7b-d are some of the other 

failure paths observed in this work and show crack jumping/deflection from the mid-plane to the 

outer interface. Experimental data from the specimens that fail in the configuration other than 

shown in Fig. 10-7a is therefore not included in the results reported here. 

10.5 Data Reduction & Discussion 

Mode II potential energy release rate (Gri) is then determined using the beam theory [3] and 

variational [6] analyses. The classical beam theory solution for Gn obtained by Russell and 

Street [4] is given by 

GBeam theoiy 9a"P 2D2 

4£(2Zj+3aJ)P 
(1) 

where a is the delamination length measured from the support, 2L is the specimen span, 2b is the 

width, S/P is the measured slope from the load-displacement data and Pc is the critical load at the 
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Fig. 10-7: Schematic of the observed failure paths in polyester-epoxy-composite system 

instant the starter crack propagates.  Alternately, the compliance calibration method (CCM) can 

be employed to determine the energy release rate that is given by 

2 r>2 

G CCM 3maP^ 

Ab 
(2) 

where 5: and P: are the measured deflection and load level recorded for several values of 

m (3) 

delamination length, ^  For the variational model [6], potential energy release rate G (equal to 

Gn for ENF specimen) is defined as 

G = -dn/dA (4) 

where FI is the potential energy U - W, U is the strain energy, W is the potential energy of the 

prescribed tractions, and dA is the crack extension area. Table 10-1 is a summary of the limited 

test data along with the computed values of energy release rates using the three methods outlined 

here. 

As seen in Table 10-1, there is a large amount of scatter in the computations with the 

compliance calibration method predicting the largest values of Gn and the variational analysis 
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providing the most conservative estimates.   Nevertheless, the average value of Gn with the 

present analysis (2.1 lb/in) is still considerably larger than the value of Gxc = 0.4 lb/in which was 

used to predict the progressive debonding of the polyester/epoxy interface in the push-out test 

[2].  The reason for this discrepancy is not clear at present though several issues come to mind 

such as sample preparation, influence of surface roughness, effect of adherent, planar versus 

curved interface  and mode mixity under combined loading in the push-out test.     The 

experimental data is also rather limited and has a large scatter with inconsistency between beam 

theory data reduction techniques, namely, using the critical load at onset of crack propagation 

versus compliance calibration method.   Finally, we need to resolve the issue of whether the 

Mode II toughness, Gn, measured in a ENF test is the same as the critical value of the shear 

energy release rate, Gxc, in the push-out test. Obviously, there are several unanswered questions 

at present which need further investigation. We are also in the process of testing some more test 

specimens which should reduce the scatter in the data and narrow the error range in the 

predictions. 

Table 10-1.   Summary of test data and computed Gn values 

Specimen # 
Width, 

2b 
(in) 

Thickness, 
2h 
(in) 

Length, 
2L 
(in) 

Mode II Energy Release rate, lb/in 

Compliance 
Calibration 

Method 

Beam 
Theory 

LRAM (present 
analysis) 

1 1.006 0.193 5 4.782 3.295 3.102 

2 1.007 0.193 5 3.491 2.405 2.267 

3 1.012 0.193 5 2.482 1.954 1.620 

4 1.013 0.193 5 2.392 1.883 1.563 

5 0.994 0.233 4 4.672 3.244 1.922 

Average 

. 

- 3.564 2.556 2.095 

 „  
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11.0 MICROMECHANICAL RESPONSE OF A MULTI-PHASE COMPOSITE 

11.1 Introduction 

The objectives of this mechanics effort are to support the development of a revolutionary 

turbine burner in the areas of material selection and analytical modeling. Specifically, we 

initially consider an oxide-oxide composite consisting of 2D reinforcement (Nextel 610 or 720 

fibers) in a matrix consisting of alumina particles, voids, inherent cracks due to the processing 

conditions, and a silica bonding agent. Predicted quantities include the thermomechanical 

effective moduli, thermal conductivity tensor, phase stresses, and damage due to processing and 

service loading conditions. Initial work will focus on elastic behavior while subsequent research 

will treat the composite creep response. The effective composite properties, in turn, will serve as 

input parameters in a 3D FEM to analyze the stress fields in the turbine burner under operational 

conditions (this work will be done by others). A feedback loop between the FEM and the 

micromechanical model will be established to define the evolution of the service-induced 

damage. The overall program objectives are to establish the scientific knowledge needed to 

develop an ultra-compact, high-energy-density turbine burner that will enable aero propulsion 

systems to operate on a constant temperature cycle and also to establish a science-based 

methodology in which the development of new hot section components (turbine burner) and the 

enabling materials evolve through interactive studies that couple the component, structure, and 

material requirements. 

The basic research issues in mechanics include the model details for such a complex multi- 

phase composite material. In particular, calculation of phase stresses as well as "homogenized" 

matrix properties, and the resulting failure initiation and fracture mechanics laws to govern crack 

distribution. The homogenized matrix properties are of concern from both theoretical and 

experimental viewpoints. For example, no experimental samples of the multi-phase matrix exist. 

In fact, it is not known whether such specimens are even possible to manufacture in any cost- 

effective manner. It is therefore essential to determine the moduli and strength properties of the 

matrix by analysis and correlate these predictions with experimental observations of stiffness and 

damage in the composite material. The scale at which this modeling can be successfully 

accomplished is not known apriori and will pose severe challenges to the experimentalist as 
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well. Fortunately, previous work funded by AFOSR has provided us with a good background in 

studying micro fracture theoretically and conducting the detailed experiments to query the quality 

of the predictions in a realistic manner. 

11.2 Methodology 

The approach will follow a building block scenario in which the microstructure is 

homogenized at various levels depending on the particular quantities being sought. Firstly, the 

effective moduli of the multi-phase matrix material will be computed by use of a three-phase 

version of the Mori-Tanaka scheme [1-3]. These results will also be compared with multi-level 

representations of particles, voids, and binder possible with the NDSANDS [4] model. 

Secondly, the effect of yarn crimp on the 3D effective moduli of a composite will be determined 

by comparison of a fabric reinforcement model [5] with that for a cross-ply laminate and also 

with the straight-fiber micromechanical stiffness model NDSANDS. The homogenized matrix 

moduli will be assumed in this comparison. Since the as-processed composite is known to 

contain a fairly well defined distribution of cracks normal to the fiber directions, we next 

determine the effective moduli of a damaged ply using the known crack spacing in the 

Schoeppner-Pagano [6] model and the moduli from Pagano's [7] 3D exact laminate elasticity 

theory. Finally, the two cracked layers are assembled and the moduli computed from the exact 

laminate theory and also by volume averaging of the stiffness and compliance tensors. These are 

upper and lower bounds of the moduli and are free from the bias caused by a lamination scheme. 

It is these results which can be compared to experiment. They are also used to assess the quality 

of the various assumptions invoked in the calculations and to define the influence of the damage 

on the effective moduli. This modeling approach can be shown to produce very good agreement 

with the experiments for effective moduli, however, the prediction of phase stress distributions is 

not expected to be accurate. In order to calculate more accurate phase stresses so that the failure 

characteristics can be predicted, we replace the previous layer models with a concentric cylinder 

model [8] in which the distinct fiber and homogenized matrix phases are recognized, along with 

a micromechanical representation of the damage. The latter damage mode consists of fiber- 

matrix debonding coupled with matrix cracks emanating from the debond tips. This model will 

provide a more accurate prediction of the stresses in the fibers and "homogenized" matrix and 

can also be checked for consistency with the damage observations.   It will also permit one to 
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return to the undamaged homogenized matrix and estimate an upper bound on the residual stress 

state leading to cracking. Thus, a true strength property of the homogenized matrix will have 

been established. If the details of the local cracks can be established at the particle, void, and 

binder scale, we hope to formulate an effective field model in which the stress in the weakest 

(most likely the binder) constituent can be estimated. If correlations with experiment are 

successful, we will be in a position to vary the composition and/or ratios of constituents to 

provide improved performance. Some of these steps will now be demonstrated below as 

significant results. 

11.3 Results & Discussion 

Based on Mori and Tanaka's concept of " average stress" in the matrix and Eshelby's 

solution of an ellipsoidal inclusion, an approximate theory was developed by Weng [1] to 

evaluate the overall moduli of a general multiphase, anisotropic composite with arbitrarily 

oriented anisotropic inclusions. For the material system under consideration, the "homogenized 

matrix" consists of stiff alumina particles finely dispersed in silica. Additionally, the matrix has 

a significant amount of porosity. We will assume that both the alumina particles and the pores 

are spherical in shape and evaluate the elastic properties of the effective matrix (i.e., alumina + 

voids in silica) using the expressions developed by Weng [1]. The solutions to the effective 

coefficient of thermal expansion of the three-phase solid and effective thermal conductivity of a 

multiphase isotropic composite, are given by Pan and Weng [2] and Morris [3], respectively, 

using the Mori-Tanaka approximation. Using the material properties of alumina (E=310 GPa, 

v=0.15, ot= 8.5 e-6/°C, ji=10 W/m-K) and silica (E=72 GPa, v=0.16, a=0.5 e-6/°C, 

|j=l .75 W/m-K), the effective matrix properties are evaluated as, 

Em= 69.8 GPa, vm=0.18, ccm=7.44 e-6/°C, jam=2.66 W/m-K 

using particle and void content of 0.52 and 0.34, respectively, in the matrix. 

The fabric itself is an 8 Harness satin which could be approximated by a cross-ply laminate. 

Pagano and Tandon [4] have developed a theoretical model to approximate the thermo-elastic 

response of multi-directional coated fiber composites. In order to employ their model, we will 

approximate the 8 Harness fabric by orienting the fiber tows in 0 and 90 degree orientations in 

the cross-sectional plane of the effective matrix, the properties of which have been earlier 
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determined. Assuming that no initial damage is present and using Ef=262 GPa, vf=0.25, af=6.0 

e-6/°C9 |nf=6.5 W/m-K, for Nextel 720 fiber, we evaluate the following properties for the 

undamaged fabric, 

Ex = Ey = 136.3 GPa, E= 116 GPa, vxy=0.1859, vxz = vyz= 0.2130 

Gxy = 49.42 GPa, Gxz= Gy~ 48.75 GPa, ax= ay= 6.502 e-6/°C, a = 6.719 e-6/°C 

\x = ]iy= 4.141 W/m-K and n = 3.895 W/m-K 

where x-y is the fabric plane and z is the thickness direction, and the fiber volume fraction is 

0.45. These computed thermo-elastic constants using NDSANDS [4] are in very good agreement 

with the analytical results of Naik [5], where the actual fiber architecture is considered in a unit 

cell, thereby, supporting our approximation of the 8 Harness satin weave. The in-plane 

properties also agree with the classical lamination plate theory results where the fabric composite 

is approximated as a [0/90]s laminate. The experimental measurements are: 

Ex - 80 GPa, vxy= .05 - .08, Gxy = 15 - 23 GPa, ax - 6.2 e-6/°C 

so that the stiffness predictions are much too high. However, on close examination, extensive 

damage in the form of transverse matrix cracking is observed (see Fig. 11-1).  This is simulated 

200 
Fig. 11-1: SEM micrograph showing extensive matrix cracking in as-processed fabric 
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using Large Radius Axisymmetric Damage Model [6] for the average crack spacing observed in 

the interior ply of a cross-ply laminate: 

Ex = 90.4GPa, Ey= 136.18 GPa, E = 115.98 GPa, vyx=0.1687, vzx = 0.1704, 

vyz= 0.2124, Gxy = 34.53 GPa, Gxz= 43.29 GPa, Gyz= 48.75 GPa, 

ocx=6.41 e-6/°C, ay= 6.50 e-6/°C, a = 6.72 e-6/°C 

Using the3-D Lamination Theory [7] to evaluate the effective properties of the damaged ply, 

we get 

EL= 156.4 GPa, ET = 21.99 GPa, Ez= 115.9 GPa, vLT=0.2185, vLZ = 0.2185, 

vTZ= 0.0391, GLT= 19.64 GPa, GLZ= 49.45 GPa, GTZ= 38.51 GPa, 

<xL= 6.33 e-6/°C, aT= 6.67 e-6/°C, az= 6.76 e-6/°C 

The damaged plies are now arranged in a [0/90]s orientation to obtain effective laminate 

properties: 

Ex= Ey = 89.54 GPa, E= 115.94 GPa, vyx=0.0539, vzx = 0.1682, 

vy = 0.1299, Gxy= 19.64 GPa, Gxz= Gyz= 43.30 GPa, 

ax= ay= 6.38 e-6/°C, a = 6.76 e-6/°C 

which are in good agreement with the experimental measurements. 

11.4 Summary 

From the mechanics viewpoint, success of our effort will provide the Air Force with the 

analytical tools and experimental protocol to enact true composite material design for high 

temperature applications. Aside from the oxide-oxide class of composites (or possibly another 

form of ceramic matrix composite), the methodology will also be appropriate for application to 

structural carbon-carbon composites which have numerous functions in thermal protection 

systems and other space vehicle applications. In terms of the overall program itself, if 

successful, it will provide a key technology essential for the development of a propulsion system 

that operates on a constant temperature (CT) cycle - an ultra-compact combustion system that 

will efficiently add heat between the turbine stages and is constructed of advanced, light-weight 
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composite materials. The lack of an ultra-compact turbine burner constructed of high 

temperature materials has been the major obstacle to the development of a propulsion system 

operating on a CT cycle. 
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1.0  THREE-DIMENSIONAL VARIATIONAL THEORY OF MOSAIC 
COMPOSITE STRUCTURES 

1 • 1  Introduction 

A generalized theory aimed at three-dimensional (3-D) stress analysis of composite structures 

is presented in this section. The generalization of the theoretical development has been performed 

in three directions: 

(i) considering arbitrary irregular assemblage of the bricks,  not necessarily a 

complete mosaic parallelepiped; 

(ii) obtaining all equations for the general case of anisotropy, so as any of the bricks 

could be characterized by 21 independent elastic constants; 

(iii) elaborating the variational equations, internal and external boundary conditions 

for a single brick for the full mosaic body. 

The theory presented in this section is allowing to apply any set of basis functions (various 

types of polynomials, power series, trigonometric functions, etc.) which may be chosen 

independently for each coordinate direction and each displacement component. In Section 2 this 

theory will be specified for the case of Bernstein basis functions. 

1.2  Generalized Mosaic Body Model 

A mosaic composite body which has been considered was assumed to be a regular 

parallelepiped. This assumption imposes obvious limitation on the class of problems which can be 

solved using the developed 3-D variational Mosaic Model. For example, the irregular mosaic 

structure shown in Fig. 1.2 (as well as any other structure having "gaps") cannot be solved directly 

using previous Mosaic approaches. 

One possible approach allowing to avoid this limitation of the model is to complete an 

irregular structure to a respective regular mosaic parallelepiped by adding "dummy" material 

bricks, as was proposed in [2]. Using this approach, the structure shown in Fig. 1.1, for example, 

is transformed into the regular mosaic parallelepiped shown in Fig. 1.2. 
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Application of this approach for 3-D stress analysis of bonded joints has been previously 

illustrated» The approach has huge advantage from the point of simplicity, which is especially 

important for the engineering applications. Namely, this enables to solve rather complex and 

diverse geometries using very simple, unified input. However, the approach also shows two rather 

significant drawbacks: (I) only external displacements, not external surface forces can be applied to 

the dummy material bricks (this narrows the circle of possible loading cases) and (II) a number of 

additional degrees of freedom have to be used, because the dummy material bricks should also be 

discretized (this unnecessarily increases computational expenses). 

Fig. 1.1:   Example of an irregular mosaic structure 
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N+1 

M+1 

"Dummy Material" Bricks 

Fig. 1,2; A "dummy" material approach applied for the irregular mosaic structure 

When comparing mosaic structures shown in Figs. LI and 1.2, it becomes clear that the basic 

problem formulation can be extended for the case of an arbitrary irregular brick assemblage. The 

required modifications are illustrated in Fig. 1.3 and can be outlined as the following steps: 
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Fig. 1.3: Brick nomenclature for an irregular mosaic structure. 

(i) Having some specific structural configuration, for example, the one shown in 

Fig. 1.1, to complete that to the regular parallelepiped by adding "empty" bricks, as 

shown in Fig. 1.3. This allows one to save most of the previous theory and 

develop simple nomenclature scheme for the "material" bricks. Each brick in the 

obtained regular parallelepiped, including the empty bricks, is now identified by the 

index 5 = 1,...,5. 

(ii) For any given mosaic body configuration, all of the material bricks and all of 

the empty bricks are separated into two groups. Those belonging to the material 

brick group are identified by index $, and those belonging to the empty brick group 

are identified by index s . The separation procedure can be easily computerized 

using "pointer" technique. 
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(iii) All material bricks are then renumbered in a through-sequence, using index 

s = 1,...,5. And all empty bricks are renumbered in a through-sequence using index 

s°=S + l,...J. So, 5 = 5-5°, where S = L-M-N, and 5 and 5° are total 

numbers of the material and empty bricks in the regular mosaic parallelepiped, 

respectively. After that, all empty bricks are excluded from the consideration by 

simply mentioning that total number of bricks in the model is 5, and only those 

bricks are regarded which correspond to s = 1,...,5. 

1 • 3  Formulation Of The Variational Problem 

In the further considerations we assume that each of 5 material bricks may have linearly 

elastic anisotropic properties. Stress-strain equations for the sth brick are written in the form: 

<r<'>(r) = Cif4s\r) + Cim°\r) + cg>e?>(r) + C$y%\r) + C{s
5Yx

s
z\r) + dgy^r) 

o<*\r) = q?4*V) + C^y
s\r) + dge?\r) + C$y%\r) + CgVgV) + C&V£\r) 

(1) 
T«(r) = Cj?fi?>(r) + C^V) + C&^'V) + C^VgV) + C^y^ir) + Ö£y%\r) 

T<?(r) = Cf?e?>(r) + cg>e«(r) + Cg^V) + cgy^ir) + Cgy%\r) + C^V) 

T«(r) = <#£?>(#■) + C^e^ir) + C#e<'>(r) + Cfc>y<?(r) + ^}(r) + Cgr^r) 

where r~{x,y,z} is a position vector. It is assumed that material properties are homogeneous 

inside each brick, hence the stiffnesses in (1) do not depend on the coordinates. Generally, all 21 

stiffness components may be independent nonzero values. In order to present forthcoming 

equations in a concise form, the following notations are introduced: 

*(*)_(*)        (s) _     (s)    a(s) _     (s)    As) _     (s)       (J)_     {s)    T(s)_rr(s) 
°x    -°\    >  Gy    ~ö2   >  Gz    -a3   '  Tyz   -°4   '  T xz   " °5   >  Txy  - °6 

M) _ p{s)      As) _     (s)        (s) _     (s)     VW _     (J) (5) _     (J) (j) _     (*) 
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After that equations (1) take the form 

(j(i
s\r) = C^e(

j
s\r) i, j = 1.....6 (3) 

Further, assuming that both the displacements and strains are small, we adopt linear strain- 

displacement relations for all of the bricks in the mosaic body: 

(4) 

M)_du{
x
S)    £(s)_d4S)    As)_du[s)      <,)_**?    du?      {s)_du?    du{s) 

Unknown displacement field in the sth brick is assumed in the form of triple series 

uis) = %llU^Xr(x)Y;\y)Z^z) 

I     J    K 

uy = iliu^X?(x)Y?(y)Znz) (5) 
i=0y=0A:=0 

4s) = lllulls)X?(x)Y?(y)Z?(z) 
i=Qj=0k=0 

where U^\ ufk
s) and uf^ are unknown approximation coefficients; Xf{x),  X?(x),  X?(x) 

are three (generally independent) sets of basis functions in the x-direction; similarly,  Yjl(y)9 

Yj(y)i Yj°(y) and Z^(z), Z£(z), Z™(z) are (generally independent) sets of basis functions in 

the y and z-directions, respectively. The upper summation limits Ix, Jx, Kx, I , Jyf  Ky, Iz, Jz 

and Kz can be chosen independently. Here, we only assume that identical sets of basis functions 

are used for all of the bricks, so (5) is valid for all s = !,...,£. 

It should be emphasized that primary form of the displacement approximation (1.5) does not 

account for any specific kinematic boundary conditions which may be imposed at the exterior of 
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each individual brick. When considering any specific boundary value problem, an admissible 

displacement field, which accounts for the essential boundary conditions, has first to be defined by 

modifying (5). Consequently, certain coefficients from the primary sets UJ^\   Uf^ and U?fjf* 

may become known or mutually interrelated values» However, using primary form (5) of the 

displacement approximation is most suitable at this stage of our theoretical development. 

Variational principle of minimum total potential energy will be applied here; this is written as 

<5/7 = <5(P-A) = 0 (6) 

where P is strain energy of the mosaic body and A is work of surface forces acting on its exterior. 

Total potential energy U can be represented as sum of potential energies II ^ of all of the bricks in 

the body: 

n = £i7w = ]T(/>w-Aw) (7) 
5=1 4=1 

The consequence of (6) are Ritz-type equations which are written in the form: 

dn 
dulif) uu

pqr 

= 0, 
dn 

du2(f) UKJ
pqr 

= o, dn 
du3(f) UKJ

 pqr 

= 0 (8) 

where four indices/?, q, r and/ identify all independent unknowns remaining in the displacement 

approximations (5) after applying the imposed internal and external kinematic boundary conditions. 

In the view of (7), equations (8) take the form 

i 
i=i 

dp (4) dA (4) 

dU\(f)     dUKf) 
\WKy pqr        ^^ pqr  J 4 = 1 

dP (4) d4(5) 

dU2(f)      dU2(f) 
\UKJ pqr        UKJ pqr   J 

s t 
-0.X 

4=1 

dP(s)       dA (*) 

dU3(f)      du3(f) 
y^^ pqr        ^^ pqr   J 

= 0 (9) 

It should be emphasized that after imposing certain continuity conditions between the bricks, strain 

energy of the 3th brick may become a function of some unknowns which belong to the other bricks 

in the primary displacement approximation (5). However, in the case of noninteracting bricks 

equations (9) split into a series of independent equations 
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dp(s)        dA(s) dp(s) dA(s)   ^ dp(s) dA^)_ _ 

dUl(s)    dUl(s)      '     dU2{s)    dU2(s)      '     dU3(s)    dUXs) UKJ
pqr       UKJ pqr UKJpqr       u^ pqr UKJpqr       UKJpqr 

Our next objective is to express P^ and Aw in terms of the unknowns UJjj*\ U2^ and U^\ 

1.4  Strain Energy And Work Of Surface Forces For A Single Brick 

Generally, strain energy of an anisotropic body can be written in the form 

1 Vs a,j8=l 

Taking into account Hooke's law for a generally anisotropic material (1) and then substituting (4) 

and (5) in (11) we obtain the following expression: 

1    Ix    J x   Kx   lx    Jx   Kx +    ly    Jy   &y   Ix    Jx   Kx 

PS   ^XZZXXS aijkt
SpqrUijk  Upqr +oZSXZZZ aijk?pqrUijk   U pqr 

* i=zQ j=zQlc=Qp=zQq~Or=0 A i^Q j-Qk-Qp-Qq^Qr^O 

* Iz    Jz    Kz    Jx    Jx   Kx *    Ix    Jx   Kx    *y    J y   &y 

+ 7 Z*Z* 2L, L L Laijk,pqrUijk   Upqr + ^ 2, 2w 2w L 2w Laijk>pqrU ijk   Upqr 
4 i^Qj^Qk-Qp^Oq^Or^O * i=Qj=Qk=Qp=Qq=Qr=Q 

i  h Jy Ky h  Jy Ky i  h  Jz Kz  h  Jy Ky 

4 211211«gär^S? *\ X 2 X XIX«gä^ß?       (") 

1    lx    Jx   Kx    Iz    Jz    Kz -j     'y    Jy   &y    Iz    Jz   Kz 

*\1 X X X X E»32är<W+ |X X X X X X4MS)^ 
* /-07=0ik=0p=0^=0r=0 * i=Qj=Qk=Qp=Qq=Or=0 

1   ^z    ^z   ^z    ^z    ^z   ^-z ^xxxxxx«^«1 

Here 

_ll(^)        _   i^O)    ^rÜÜyUlLryltU.     J~l(s)    ^UUxjllU rj\lU (^{s)    TfUU Vllll ryidl     ,Ms) ( TfUU T/WW rjUU      ,      YWW^ V^W ^"^ \ aijk,pqr-"^\\   Aip r7? ^r + c66  A//? f/? ^r + c55  Aip X jq ^kr "^56 \A/p Ijq ^kr ^ Aip Ijq ^kr ) 

,S^(s) l \rÜU T/UÜ ryUU    ,    VUU VI4U ryUU \    ,/^(s) ( S7ÜU VUU 7UÜ    ,    VUÜ VUU ryÜU \ +C16 \Aip rjq Lkr + Aip Xjq ^kr J+C15 [Aip 1jq Lkr + Aip Xjq Lkr j 
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12(5)     __   s^(s) YV1
-
1
V^

U
 7VU _L /^(5) Y^

U
V

V
^

1
 7VU -L/^W YVUV™1 7VU -L /^M Y*7" Vvu 7VU 

ai]Kpqr "" c12  A/p f/tf ^fo* + c66  Aip Jjq ^kr "^26 ^ip zjq ^kr  ^ ^16 ^ip Jjq ^kr 

(13) 
iS^(s) YVU

V
VU

 7™   ,/^(s) YVU
V®

U
 7™ J_ /^fa) v17" VÜW *7^w -i- /^(

J
) Y

VU
V

V
^

L
 7^

U
 _L. /^M Y^UVVU 7™ +c45 A/p f/^ ^fcr +c25 Az> f/$ ^Jfcr + c14 A*> f/? A£r "*" u46 A*> f/^ ^Jfcr  + c56 A//? f/? ^Jtr 

^13(5)     __  fy(s) YW
^V

WU
 7™u i  /"'M Y™U

V
WU

 7WÜ _L^
S

^ YWUVWÜ 7^u j. W-s) YWU
V™U

 7
W

^
L 

aijKpqr~ u13   A//?   f/?   ^r  + c55  A/>   f/V?   ^r   +L-36 Aip   2y<?   ^Ar   "*~ u45 A*p   f/?   ^r 

, ^0) YWU
 vwu 7™il _L r^('s) YWÜ V™u 7WU _L /^(5) YWU

 V™il 7WU ^./^(s) Y^
1
V

WU
 7

WU 

±L-35 *ip   Ijq   ^kr   ^ c14 Aip   *jq   ^kr   "*" u46 A//?   f/^r   ^Jfcr   +M5 Aip   1jq   ^kr 

y/^(s) Y™U
V

W
U 7WU 

"^Sö A*>   Ijq   ^kr 

Rest of the coefficients entering in (12) is defined as follows. The coefficients  a^J , 

afk!pqr 
and afk\Spqr are obtained from 4£V' afk\mr and aifSqr^ respectively, by the following 

cyclic permutations: 2 for 1, 3 for 2, 1 for 3, 5 for 4, 6 for 5, 4 for 6, j for /, k for j, / for k, q for 

/?, r for #,./? for r5 v for u, w for v9 u for K;, F for X, Z for 7, and X for Z. Then, coefficients 

4£lr> 4k%r and 4?Är ^ obtained from 4£^ "fklpqr and 4Ä- respectively, by the 

same cyclic permutations, 

Notations introduced in (13) are defined in Appendix A, Note that the coefficients possess 

the following important symmetry properties 

flllM    =flH(j) 22«    -fl22W 33«    _ „33« 
ijk,pqr        pqrjjk* ijk.pqr        -pqrjjk* ijk,pqr        pqrjjk' 

„12« _„21« 13«  -„31« „23« ^ „32« n4x 

12W    =fl21(5) 13W    =fl31(j) 23(j)    =ß32W 
uijk,pqr      upqrjjk'>        uijk,pqr pqr,ijk> ijk.pqr pqrjjk 

In the particular case of 7X = / = Iz-h  Jx-Jy^Jz = J and Kx= Ky = Kz~ K, expression 

(11) is reduced to the less cumbersome form 
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!    /     J    K     I     J    K 
pW-iYYVVVVL11^   TA(s)TJ\{s)   ,   _12(5)   jj2(s)rj\{s)        13(5)   TJ3(s)nl(s) 
r       - 0 Z* ZJ la 2u La 2^\aijKpqrUijk   U pqr +' aijk,pqrUijk   Upqr ^ aijk,pqrUijk   Upqr 

^ |-==0y=0ik=0p=0^=0r=0 

21W   rrl(j)r72(5)  ,     22(5)   rr2(j)r72(j)   ,     23(J)   ^3(5)^2^)        31(5)   TA(s)n3(s) nSN 
~ruijk,pqruijk   upqr  ^ uijk, pqr u ijk   upqr  "r uijk,pqruijk   upqr  ^ uijk,pqruijk   upqr \l^J 

32(5)   n2(s)ri3(s)        33(5)   TJ3(s) rj3(s)\ 
^aijk,pqrUijk    Upqr  ^ aijk,pqrUijk    Upqr J 

Note that expressions (12) and (14) do not account for any kinematic boundary conditions. Hence, 

when solving any specific boundary value problem they would take some modified form. 

Next consider expression of the work of external surface forces. For a single brick this is 

defined by: 

*w - £ 11 w+& £ £»w +£ £ hr<$' 0« 
/=0jf=0A:=0 i=oy=Oit=0 i=0./=0*=0 

where 

/ilCO — y"/Y W(5)w,/y(5)u,/n(^)/   ,y«/Y       WWfU+lyWlU+UWI+l 
V^yA:    -Ai lX/JJ(xc); Z(xx)^^xc    + Ai l*/+l JJ(xx);      Z(xt)A;     ^xc 

+Jj {ym)A(xy)i    L{xy)k   &xy     +Ii Um+lj^xy)/        Z(xy)A:       Uxy U 7>> 

+z/:VznJA(xz)i   rUz)7   ^xz     + Z£ lzrc+l )A(xz)i       X(xz)j       Ux ^xz 

n2^ - YV
(Y \y(s)vjyr(s)v,ln(s)l      yV( \y(s)v,My(s)v9l+ln(s)l+l 

^ijk    ^Ai\xl)I(yx)j^(yx)k^yx   "hA/ \xl+l)I(yx)j      Zj(yx)k     &yx 

,y^„    \Y(s)v,m7(s)v,mn(s)m   *yv( \ Y(s)v,m+l y(s)v9m+ln(s)m+l n o\ 
mjrlj \ym)A(yy)i    ^(yy)k   &yy      ^Xj Vm+l)A(yy)i        ^(yy)k       ^yy ^iö^ 

M7
V
(?   \Y(s)v,nv(s)v,nn(s)n  ,   yV ( \Y(s)v,n+\y(s)v,n+ln(s)n+l 

^^k\zn)A(yz)i   l{yz)j   ^yz     ^ ^k [zn+l )A(yz)i       I(yz)j       ^yz 

/-)3W — Yw ( v \y(s)zuj y(s)w,ln(s)l  ,  ywfv      \v(s)w,l+l 7(s)w,l+\n(s)l+l 
&ijk    ~A/   \xUI(zx)j   lj{zx)k ^zx    i"Az   \xl+l)I(zx)j       Zj(zx)k      ^zx 

+Yj   {ym)Ä(zy)i     Z(zy)k    &zy      +J7   Um+ljA(^)/ ^{zy)k        &zy ^) 

,7^/7    \y(j)W,ny(jr)U7,7ln(j)«    ,    y W ( \Y(s)W,n + ly(s)W,n + ln(s)fl + l 
+zfc \zn)A(zz)i    X(zz)j    Uzz     + Z£ \zn+\)A(zz)i        Y(zz)j        &zz 

In these expressions, Q^\...,Q^}n+l are 18 (in most general case) sets of the external surface 
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force amplitudes, which have to be obtained from the given surface force distribution laws. Other 

notations used in (17)-(19) are also possible. By using (16)-(19), one can derive work of external 

surface forces acting on the brick for any given surface load distribution. This can be done for any 

system of basis functions adopted for the displacements in the x, y, and z-coordinate directions. 

1.5  System Of Linear Simultaneous Equations For A Single Brick 

Now, having equations (10) and expressions (12), (16), it is easy to derive general form of 

linear system of simultaneous equations for a single brick. The system has been below: 

Ix     Jx    Kx 'yJy&y ^ Z     ^ 2,    ^Z 

1 £J JL 
üijK pqr Uijk    + 1 1 1 aijk, pqr ^ijk     + HI Uijk9 pqr Uijk     = Qpqr 

i=0j=0k=0 i=Qj=0k=0 i=Qj=0k=Q 

for p = 0,l,...Jx;     0 = 0,1,...,/^;     r = 0,l,...,^ 

Ix    Jx    Kx Iy    Jy    Ky Iz     Jz    Kz 

XXI Äv%>+1XI «SErf ä" +X X X «3M° - <£? «a) 
;=oy=Oifc=o (=oj=ofc=o i=oy=Oifc=o 

for p = 0,l,...Jy;     q = 0,\,...,Jy;     r = 0,l,-,Ky 

Jx    Jx   Kx 'y    Jy    &y Iz     Jz    Kz 

111 aijk,SpqrUijk    + lH aijk9pqrUijk     +X 1 1 aijk9pqrUijk     = Qpqr \ 

for p = 0,l,...,/z;     <j = 0,l?...,7z;     r = 0,l,...,J£z 

Superscript (5) in (20) can take any value from the set s = 1,2,...,5. 

It should be pointed out that system of simultaneous equations (20) is generic in nature: it has 

singular matrix and, therefore, can not be readily solved. This statement has clear mechanical 

explanation: no kinematic boundary conditions have yet been imposed on the bricks, hence, a rigid 

body translation and rotation were not restrained. Due to that, any infinitesimal surface force 

entering in the right hand side of (20) would cause infinite displacements. In order to obtain a 

finite-valued solution for any specific boundary value problem, some minimal set of geometric 

constraints should be imposed. 
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Equations (20) can be further written in the following concise form: 

aß(s) jrß{s) _ na{s) 
uijk,pqruljk ^pqr 

where a = 1,2,3; ß = 1,2,3; s = !,...,£ and the following ranges of the other indices apply: 

(21) 

p = 0,1,. ..Jx\ q = 0,1,.. .9JX; r = 0,1,...,^ 

p = 0,1,. ..Jy\ q = 0,1,..., Jy\ r = 0,1,...,^ 

p = 0,1,..., Iz;     q = 0,1,...,/z;     r = 0,1,...,i^ 

for a = 1 

for a = 2 

for a: = 3 

Summation convention over /?, /, j, and & applies in (21). 

System of equations (21) can be also written in a matrix form 

A(5)UW = Q(5) (22) 

For the sake of compactness the vectors and matrices in (22) are further written explicitly for the 

particular case 

4 =/;y =/z =/>    h^Jy^Jz^Ji    Kx - Ky - Kz - K 

which allows to obtain the following: 

uw = 
u3W 

u O(J) 

u, a(s) 
000 

U, a(s) 
00K 

ut 
a(s) 
0JK 

U a(s) 
UK 

va(s) 

u a(s) 
K+l 

u, a(s) 
(J+lKK+l) 

T1a(s) 
{u(I+l)U+D(K+l)) 

with a = 1,2,3. 

The following notation is further introduced: 

where 

f = f(i,j,k,a) = l + i + j(J + l) + k(J + l)(K + l) + (a-l)(I + l)(J + l)(K + l) 

(23) 

(24) 

(25) 

(26) 
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As before, / = 0,1,...,/; j = 0,1,...,/; k = 0,1,...,if and a = 1,2,3. 

The vector of known right hand sides is 

QW = 

QlW 

Q2is) 

Q3W 

QCCis) _ 

na(sY 
^000 

Qais) 

na(s) 

> — < 

na(s) 

^(/+i)(j+i)(A:4 

where 

g = Ä(p^,r,j8) = l + /> + 9(7 + l) + r(7 + l)(^ + l) + ()3-l)(/ + l)(J + l)(Ä' + l) 

with p = 0,1,...,/, 9 = 0,1,...,./; r = 0,1,.,.,£" and j0 = 1,2,3. 

The following notation is further introduced : 

Q(,)-{(#>} 

Next, the following matrix is defined: 

(*)„ A 

where 

"All(*) A12W A13(J)' 

A21(J) A22W A23W 

A31W     A32(*)     A33W 

"   aßis) 
a000,000      " 

aßis)                    aß(s) 
*     "00A:5000     *"     aIJK,Q00 

aßis) _ aß(s) 
aooo,oo#   " 

aß(s)                     aßis) 
'   "OOA:,OO£   '"'   U

IJK,QOK 

_ "ooo,/JA: 
aßis)                     aßis) 

aQ0KJJK               aIJKJJK ^ 

„a/3« 
aiK+\\\ 

naßis) 
"(/+l)(J+l)(Ä'+l),l 

al,(tf+l) aiK+\)AK+\) 
aßis) 

a(/+l)(J-fl)(Ä>l),l 

_"u/+t )(J+D(ä:+I)   * 
aßis) 

"(A:+I),(/+I)(J+I)(^+I) a(/ + l)(J + l)(^4-l),(/ + l)(J + 

(27) 

(28) 

(29) 

(30) 

(31) 
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So, (30) is of the form 

Aw = afg (32) 

where/and g are defined by (26) and (28), respectively. 

Thus, at any s value (22) represents a system of 3(/ + l)(/ + l)(ÜT + l) linear equations with the 

same number of unknowns« It is easy to check that due to the properties (14) matrix Aw is 

symmetric. It has to be emphasized again that system of simultaneous equations (22) does not 

incorporate any geometric boundary conditions. 

1.6  System Of Linear Simultaneous Equations For A Set Of Noninteracting 
Bricks 

Next step is to derive a generic form of resulting system for a mosaic body containing S 

noninteracting bricks. The system is written in the form 

AU=*Q (33) 

where 

U = {f/0} (34) 

with 

(j) = (t>(i,j,k,cc,s') = l + i + j(J + l) + k(J + l)(K + l) + (a-V)(I + l)(J + l)(K + l) 

+30'-l)(/ + l)(/ + l)(K + l) 
(35) 

where s' runs values 1,2,.,.,5. Further, 

Q = {ß,4 (36) 

where 

(p = (p(p,q,r,ß,s" ) = l + p + q(J + l) + r(J + l)(K + l) + (ß-l)(I + l)(J + l)(K + l) 

+3(s"-l)(I + l)(J + l)(K + l) 

with s" running values 1,2,...,5. 
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The matrix entering in (33) is written in the form 

* = [*&] (38) 

where <j) and q> are defined by (35) and (37), respectively. 

The column vectors U and Q each has D = 3S(I + 1)(J + l)(K + l) components, and A is a 

symmetric square matrix. Equations (33) are reminiscent with the standard type matrix equations 

common in the finite element analysis. Indeed, A recalls a global stiffness matrix, U recalls a 

nodal displacement vector, and Q a nodal external force vector. However, there are substantial 

differences: the vector of unknowns U defined by (34) contains coefficients of the displacement 

approximation (5), which are not necessarily nodal displacements as in a customary finite element 

analysis. Also, components of the right hand side vector Q have, generally, different physical 

meaning than nodal forces in a customary finite element analysis. Nevertheless, if using special 

types of basis functions ( "shape functions") in the displacement approximation (5), equations (33) 

can be directly related to the result of derivations performed for the respective 3-D hexahedral finite 

elements. This emphasizes a generic value of the developed variational analysis approach. 

It is worthwhile pointing out again that no a priori assumptions have been yet made regarding 

specific type of basis functions in the displacement approximation (5). In principle, the developed 

theory can be applied with any system of basis functions. For example, trigonometric functions, 

power series, splines, Chebyshev, Legendre, Bessel, Laguerre, Lagrange, Bernstein and other 

polynomials can be utilized. Furthermore, the theory allows one to use different type of basis 

functions in the x, y and z-directions. Specific choice of the basis functions can be motivated by 

their preferable order of continuity, analytical convenience, higher convergence rate, minimal 

roundoff errors, and other computational considerations. 

Further development of this theory will address formulation of the internal continuity 

conditions for the mosaic body. The conditions of continuity of displacements and transverse 

stresses at the boundaries between the bricks are presented in the next section. 
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1.7  Continuity Conditions at the Inter-Brick Boundaries in an Irregular Mosaic 
Structure 

Now we return to Fig« 1.3 and consider interaction between the bricks in a general case of 

irregular mosaic structure. Following the approach developed in Section 1.2, all internal 

boundaries between the bricks are segregated into three groups: 

(a) The boundaries between any two material bricks are further treated as internal 

boundaries of the  mosaic  body.   Accordingly,  the  conditions  of  displacement 

continuity and    transverse stress continuity will be imposed there. 

(b) The boundaries between a material brick and an empty brick are further treated as 

external boundaries of the mosaic body. Accordingly, external kinematic or static 

boundary conditions may be imposed there. 

(c) The boundaries between any two empty bricks are just ignored in the further 

considerations. 

Further, all those exterior surfaces of the bricks which are, at the same time, parts of the 

exterior of the mosaic body, are segregated into two groups: 

(d) those which belong to any material brick and 

(e) those which belong to any empty brick. 

The surfaces of group (d) may be exposed to external kinematic or static boundary 

conditions. The surfaces of group (e) are ignored in the further considerations. Segregation of the 

surfaces between the groups (a)-(e) may be performed in the computer code using "pointer" 

technique. 

Now it is clear that the internal boundary conditions have to be formulated only for the 

surfaces belonging to group (a), and the external boundary conditions can be formulated only for 

the surfaces belonging to groups (b) and (d). Next we elaborate one possible approach to 

formulating internal displacement and stress continuity conditions in the presence of empty bricks. 

First of all, it is recognized that there are three sets of internal plane elements in the mosaic 

parallelepiped shown in Fig. 1.3. The first set contains all plane elements perpendicular to the x- 
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axis and having coordinates JC/, / = 2,3,...,L. The second set contains all plane elements 

perpendicular to the j-axis and having coordinates ym, m = 2,3,...9M. And the third set contains 

all plane elements perpendicular to the z-axis and having coordinates zn, n = 2,3,...,N. The 

internal displacement and stress continuity conditions for the case of a regular mosaic 

parallelepiped have been derived in Sections 1.4 and 1.5 of [1], Now we need to modify them 

taking into account that at any location in the mosaic structure there can be empty brick. 

All those plane elements which are perpendicular to the x axis and separate two material 

bricks are now identified by numbers lmn9 where m = 2,3,...,M-t-l and n = 2,3,...,iV + L For each 

specific combination of m and n, the numbers lmn belong to some subset of the sequence of 

numbers 2,3,..., L. The sequence lmn is determined by the architecture of specific mosaic body 

under consideration. In particular, if some row of bricks corresponding to m~m*9 n~n* does 

not contain any empty bricks, then lm*n* -2,3„,.,L. However, generally lmn does not run all 

terms of the sequence 2,3,...X. Nevertheless, one can rearrange the terms using through notation, 

and get the sequence 2,3,.,.,L, where L< L* For the latter sequence we will use index / which 

runs values / = 2,3„„,£. 

Analogously, all those plane elements which are perpendicular to the y-axis and separate two 

material bricks are identified by numbers mln, where Z = 2,3,..,,L + 1 and n = 2,3„..,N + l. For 

each combination of / and n9 the numbers mln belong to some subset of the sequence of numbers 

2,3,..., M, Analogously to the above consideration, the sequence of numbers mln is rearranged as 

m = 2,3,..„Af. 

Finally, all those plane elements which are perpendicular to the z-axis and separate two 

material bricks are identified by numbers n/m, where Z = 2,3,..„L + 1 and m = 2,3,...,M+ 1. For 

each combination of / and m the numbers nim belong to some subset of the set of numbers 

2,3,...,N, Again, the sequence of numbers n[m is rearranged as h = 2,3,...,N. 
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Now it is easy to generalize the equations. The displacement continuity conditions are 

expressed as the following sets of equations. For the inter-brick boundaries perpendicular to the x- 

axis 

f'm>n\xi,y,z) = uf+1'm'n\xI,y,z) uz 

(39) 

where 

s(l,m,n) = l + (l-2) + (m-2)L + (n-2)L-M (40) 

and 

/=2,3,...,L; m = 2,3,-.,M + l; n = 2,3,...,N + l (41) 

For the inter4jrick boundaries perpendicular to the y-axis 

"?'*-n) (*. y* • z> - «?/,Ä+1,B) Uy».«); «f A,B) (*.?«.*) =«?''A+1,B) (*. ?».*); 
(42) 

Wf^")U,^5z) = Mf-'"
+1"'l)(^^,z) 

where 

s(l9m,n) = l + (l-2) + (m-2)L + (n--2)L-M (43) 

and 

/ = 2f3,...,Z, + l; m = 2,3,...,M; n = 2,3,.,.,iV + l (44) 

And for the inter-brick boundaries perpendicular to the z-axis 

ufm^ (x, y,zh)~ uf
mM1) (x,y,zA); ufm^ (*,***)=* uf^+l) (x, y,Z~); 

(45) 

«fm-Ä)U,y,zÄ) = «z'(/-,B-ii+1)U,y,zÄ) 

where 

s(l,m,n) = l + (l-2) + (m-2)L + (h-2)L-M (46) 

and 

/ = 2,3,...,L + 1;   m = 2,3,.-.,M + l; n = 2,3,...,N (47) 
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Using analogous considerations, the conditions of transverse stress continuity are formulated as 

follows. For the inter-brick boundaries perpendicular to the x-axis those are 

(48) 

(49) 

^m'n\xi,y,z) = xsi+x'm'n\xl,y,z) 

with s(l,m,ri) defined by (40), and /, m and n defined by (41). 

For the inter-brick boundaries perpendicular to the y-axis one obtains 

cjf'^n\x,yA,z) = af'h+l'n\x,yih,zy, Tf'^\x,ylh,z) = rfA+hn\x,yih,zy, 

if^\x,yA,z) = Tf^'\x,y^z) 

with s(l,m,n) defined by (43), and /, m and n defined by (44). 

Finally, for the inter-brick boundaries perpendicular to the z-axis the following is written: 

(50) 

xfm>h\x,y,zh) = ?ftmMl\x,y,zh) 

with s(Um,h) defined by (46), and /, m and h defined by (47). It is seen that the index notations 

in all above equations are consistent. The following index values take place: 

Z = 2,3,...,L + 1; m = 2,3,...,M + l; n = 2,3,...,iV + l; 
(51) 

f = 2,3,...,L; m = 2,3,...,M; Ä = 2,3,...,iV 

Equations (39), (42), (45) and (48)-(50) provide a complete formulation of all necessary internal 

continuity conditions for the displacements and stresses inside an arbitrary irregular mosaic body. 

Further development of the theory, which will be focused on incorporating these conditions in the 

variational solution is presented in Section 2. 
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2.0  APPLICATION OF BERNSTEIN BASIS FUNCTIONS 
FOR 3-D ANALYSIS OF MOSAIC COMPOSITE STRUCTURES 

2*1  Displacement Approximation 

Three-dimensional dynamic and static variational analysis methodology developed in Section 

1 for a mosaic body composed of anisotropic bricks is further elaborated here for the case of 

Bernstein basis functions of an arbitrary degree applied for displacement approximation in all three 

coordinate directions. 

Bernstein basis functions of degree N are defined as follows: 

*"®=   uül   JaQ-&N~n>     £e[0,l];     n=0,l,...,N (1) 
n\(N-ri)\ 

where N may be any integer number. For any value of n, definition (1) represents the Nth degree 

polynomial. It is well known that all algebraic polynomials of degree < N constitute a linear space 

of dimension N+l. Since the N+l functions Bn (£), n = 0, 1,..., N are linearly independent, they 

form a basis. Note that linear form of Bernstein basis functions 

sw«)=i^^r^"a-«)N-",   «*<ui (2) 

is known as Bezier curve. 

The assumed displacement approximation for the sih brick (Section 1, Eq.(5)) is written, with 

account of notations (Section 1, Eq. (23)), in the following form 

i=0j=0it=0 

u';\x,y,z) = tl luf^Xf(x)Yf(y)Z!(z) (3) 
i=Qj=0k=Q 

I     J    K 

u{s\x,y,z) = X X lU^X?(X)Y]°{y)Zw
k (z) 
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In principle, the basis functions (their degree, specifically) can be different for each 

coordinate direction. It is further assumed that same form of the displacement approximation (3) 

applies for all bricks in the mosaic body. 

When using Bernstein basis functions (1), the following displacement approximation is 

obtained from (3): 

«?>(W) = XX lul^P/(x)P](y)Pk
K(z) 

i=0j=0k=0 

I    J    K 

u{;\x,y,z)=^Y,uHs)P/(x)P](y)Pk
K(z) 

i=0j=0k=0 
(4) 

ui'\x,y.z) = X X lU^P/(x)PJ(y)Pk
K(z) 

i=0j=0k=0 

where 

Pi'(x) = 0 else 

X-X[ ^v 
yxi+\~xt J 

xi+i ~x 

Vxi+i ~xi 
for xe[xhxM]; (5) 

J\ 

JKJ-JV- 

PJ
7
 00 = 0 else 

y-yn 

yym+i ~y»i) 

ym+\-y 

Vym+\~ym) 

\J-j 

for^bwJm+i]; (6) 

JA: Pt(z) = 
K\ 

k\{K-k)\ 
<,      £*n 

Z-n+l     Zn ) 

kf ,K~k 
zn+l     Z 

\zn+l ~Zn 
for ze[zn,zn+i]; 

^K P^(z) = 0else 

(7) 
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Bernstein basis functions possess   certain  useful  properties  which  make  them suitable  for 

developing rather simple and elegant mathematical solutions and computational algorithms for 

various boundary value problems of elasticity. The following property is especially valuable: 

N 
5X(f) = l     for any £e [0.1] (8) 

It was shown that applying (8) allows one to exactly satisfy external boundary conditions in terms 

of uniform displacements and/or their first derivatives imposed on the brick. Besides that, 

Bernstein basis functions provide an opportunity of obtaining almost all parts of the solution in the 

form of analytical expressions, without using numerical evaluations of the integrals or other 

approximate procedures. This allows one to derive explicit form of the resulting systems of linear 

simultaneous equations (Section 1, Eq. (33)) and analytically formulate kinematic constraints in 

terms of linear relationships between the unknowns for various types of external and internal 

boundary conditions. 

2.2  Continuity of Displacements Between the Bricks 

Now the displacement approximation (4) can be used to specify the displacement continuity 

conditions formulated in Section 1.7. By substituting (4) in (Section 1, Eq. (39)) it is obtained 

t tWw1 'm'n) -Ul
0f

+l'm'n)VJ(y)Pk
K(z) = 0 

j=Olc=0L 

£ X[t/P(','"'") - ^%{I+1'^n)VJ(y)Pk
K(z) = 0 (9) 

X Y\u^ii'm'n)-Ulf+{'m'n)lpj
J(y)Pk

K(z) = 0 

Due to a linear independence of Bernstein basis functions corresponding to different values of their 

subscript, these conditions can be satisfied if only 
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Yjl,s(l,m,n) __ TTl,$(l+l,m,n)    TT2,S(1 ,m,n) __ TJ2,S(1+l,m,n)    rj3,s(l,m,n) _ rr3,s(/+l,m,/i) /in\ 
UIjk "UOjk >   UIjk ~UOjk »   ^fl* -^0./* t1UJ 

where j = 0,1,...,/ and k = 0,1,...,^. 

Analogous considerations applied to the continuity conditions (Section 1,   Eq. (42)) result in the 

following relations: 

Tj\,s(l,m,n) __ Tjl,s(l,m+l9n)     rj2,s{l,m,n) _ jj2,s(l,m+l,n)    rj3,s(l,ih,n) _ rT3,^(/5m+l,w) /li\ 
^/^ -"^/O* >  utf* ~ui0k > U Uk ~ u iOk ^Ll) 

where i = 0,1,...,/ and fc = 0,1,...,i£. 

Finally, the continuity conditions (Section 1, Eq. (45)) are reduced to the following: 

rrl,5(/,m,/5) _ rrl,s(l,m,w+1)    Tj29s(l,m,n) _ rr2,.s(/,m,«+l)    TT3,s(lim,n) _ T-T3,j(/,m,«+l) M ^ 

where / = 0,1,,.,,/ and j == 0,1,.,,,/. 

All three groups of relations (10) can be further written in the following unified form: 

UaXlm.n)9sUaMhlm.n-)i    ^ ^3.    j = QX...J;    * * 0,1....,* (13) 

All three groups of relations (11) can be represented as 

uPAi.A.n)-lsUßMi,m+U)t   ^1,2,3;    i = 0,1,,..,/;   * = 0,1,...,* (14) 

And all three groups of relations (12) can be written in the form 

Uj.f^^jAUrnMl)^    ys!l>2,3;    *" = 0,1,...,/;   J = 0,l„..,7 (15) 

As 

The expressions for s(l,m9ri)9 s(l,m,n) and s(l3m,h) entering in (13), (14) and (15) are given by 

Section 1, Eqs. (40), (43) and (46), respectively. The values of I, m, n, I, m and h are defined 
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by the respective expressions Section 1, Eqs. (41), (44) and (47). Relations (13)-(15) provide part 

of the whole necessary set of relations which need to be satisfied as to obtain solutions of 

boundary value problems for mosaic structures with continuous displacement field. Another types 

of the required relations will be derived in Sections 2.5 - 2.8. 

2.3  Continuity of Transverse Stresses Between the Bricks 

Next we consider the inter-brick stress boundary conditions Section 1, Eqs. 48 - 50. 

Formulation of these conditions is more complex than formulation of the displacement continuity 

conditions. 

We start with the first condition from the set Section 1, Eq. (48). By using strain- 

displacement relations Section 1, Eq, (4) and stress-strain relations Section 1, Eq. (1), written here 

for the case of an orthotropic material, the following is obtained: 

"II 
du?-m-n\x9y9z) 

dx 
+ C 

Jx~xt 

( 

+c s(l,m,n) 
13 

s(l,m,n) du?'-m'n)(x,y,z) 
dz 

s X~X? 

s(l,m,n) 
12 

rduf^n\x^z)^ 
dy 

'x-x- 
(16) 

= C 11 
'duf+^Hwzf 

dx 
,  sis(l+\tm,ri) + c12 

f dusiUl^\x^z? 

'x~* 
dy 

Jx~> 

+C Sil+UtUytl) 
13 

rduf+l^n\x,y,z)^ 
dz 

y x—y 
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Further, by applying (4) in (16) and using properties of 
dx 

and (p/(xj) in the 

intervals x e xUvxi and xe xVxi+\ Eq. (16) is transformed to the form: 

j   K 

j=0k=0 
Ml 

* ( jrl,s(l,m,n)      Tjl,s(l,m,n) 
UIjk ~~UI-\jk 

Xl     Xl-\ 

^s(l+l,m,n) 

X?   .,       X? 
l+l      I 

Tjl,s(l +\,m,n)     T A,s(l+l,m,n) 
Uljk ~ U0jk Pf(y)Pk

K(z) 

(17) 

+ sis(l ,m,n) T T2,S(1 ,m,n)     ^s(l+\,m,n)fj2,s(l. +\,m,n) 
<-12 uljk c12 u0jk 

dPf(y)   K 

dy 

+ s(l ,min)rj3,s(l ,m,n)     ^s(l +l,m,n)jj?>,s{l +l,m,n) 
c13 uIjk ^1 13 Ut Ojk 

)K, 

i'^h 
Next step is to incorporate relations (13), which express displacement continuity between the 

bricks, into (17). This results in the following equation: 

J   K 

;=o*=o 

-is(l,m,n) 
"11 

xi   xi-\ 

Tjl,s(l,m,n)     Yjl,s(l,m,n) 
uIjk UI~ljk 

s~is(l +l,m9n) 
"Ml 

l+l        I 

rj\,s(l +l,m,n)     jjl9s(l9m,n) 
U\jk ~Uljk p/(y)Pk

K(z) 

+ s~<s(l,m,n)      s~is(l +\,m,n) 
cl2 ~cl2 

2,s(hm,n)dPj (?) pK(-\ 
dy 

(18) 

II1- uijk 

+ -•s(l ,m,n))      /~*s{l +l,m,n) 
'13 C\ 13 

>K, 
TI3,s(lm,n) pJ(^

dPk   U) I _ n uv      j{y)~dT\ 
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This equation relates the displacement approximation coefficients U/^ >m>n\ Uf*[-™,n\ 

YTl,s(l+l,m,n)    jjl,s(l,m,n)   0_J   TJ3,s{l,m,n) 
U\jk '   UIjk > anCl UIjk 

The task to exactly satisfy Eq. (18) seems very difficult, may be even impossible. What could be 

tried is to first express the derivatives through the corresponding functions using the differentiation 

formula for Bernstein polynomials. Then the terms in the series can be rearranged, what will 

finally result in a very complex system of relationships between the displacement approximation 

coefficients. It is not clear if the system would be solvable without involving numerical 

procedures. So, it seems that only one opportunity exists to avoid this complexity. Namely, Eq. 

(18) is substantially simplified in the case when adjacent bricks s(l,m,n) and s(l +\,m,n) have 

identical elastic characteristics, i.e., when qf'm'/2) = qf+l>m-n\ qfm>n) = C$+lm>n) and 

cs(i,m,n) = qK/+i,m,/t)a The following equation is then obtained: 

J    K 

XZ/'cn/,m,") 
;=0£=0 xi   XU\ 

Uljk Ul-\jk 

/+1 / 

u\jk        ~uijk 

(19) 

Pf(y)Pk
K(z) = 0 

Taking into account that all basis  functions  are linearly independent,  and that   7^0   and 

cs(i,m,n) -t o5 the f0ii0Wing [s obtained from (19): 

TTl,s{l,m,n)     jrl,s(l,m,n) \ L I TjL,${l+l,m,n)      TT{,s{t,m,n) ] __ n fOCW 

/ /-I /+!        / 

for j = 0,1,...,/ and k = 0,1,...,K After some manipulations this equation is written in the form 

TA,s(l+\,m,n) __    l+\        /-I Tjl,s(l,m,n)        /+!        /  rA,s(l,m,n) (2\) 
U^ v   — v J v   — v I~ljk xt  xi-\ xi  xi-\ 
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Thus, if all bricks have identical material properties, the ax continuity condition is tremendously 

simplified. Note that relationships (2.21) also guarantee continuity of the strain ex at x = x«. 

Analogous considerations can be applied for the other stress continuity conditions in Section 

1, Eqs. (48) - (50). We do not present here the corresponding equations for the case of dissimilar 

material bricks. In the case of identical material bricks the following relationships providing 

continuity of stresses and strains take place: 

Continuity of T^ and y^ at x = x?: 

A X*      ~~ X* A X*      ""*"" X* 

xi   xi~\ xi   xi~\ 

Continuity of xxz and yxz at x = xj: 

TT3,5(/+l,m,/x) _    /-hi        l-lTj3ts(l*in*n)        /+!        / jj3,s(l>m,n) /93s) 
U* r   _ r Ö* r   _ r t-\jk 

xi  XU\ xi  xi-\ 

Continuity of a   and £v at y == ;y^: 

Tj2,s{l,m+\,n) _. -^w-f 1     ^w-1 rj2,s{l,m,n)     ^mfl     ^m rj2,s(l,m,n) (2$) 
ilk v.-v- 1     /%/* V--V- 1    */~"1* ^m     ^m-1 /m     //n—I 

Continuity of T_^ and 7^ at y = yA: 

rj\,s(l,th+l,n) = ^m+l     ^m-l rA,s(l,m,n)     ^m+1     ^m Yjl,s(l,m,n) (0S\ 
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Continuity of x    and y     at y = j^: 

Continuity of CJZ and £z at z = z -: 

Continuity of xxz and yxz at z = z%: 

Continuity of ryz and yyz at z - z„ 

AU three groups of relations (21) - (23) can be written in the following unified form: 

Tja,$(l+l,m,n) _    /+!       /-I Tja,s(l9m,n)       /+1       / jja,$(l,m,n) s^Q) 

where a = 1,2,3; j = 0,1,...,7; Jk = 0,1,...,£. 
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All three groups of relations (24) - (26) are written as 

rrj3,5(/,m+l,«) _ ^m+l     ^m-l TJß,s(l,m,n)      3^+1      ^m TTß,s(l,rh,n) nn 

y m     sm—l y m     Jm—\ 

where ß = 1,2,3;  / = 0,1,...,/; k = 0,l,...,K. 

And all three groups of relations (27) - (29) are unified as follows: 

jjj,s(l,m,h+\) _ Z-h+\     zh-\ TjY,s(l,m,h)     ^n+1     zh TTY,s(l,m,n) ,-,,-... 
Uijl ~ UijK -———UijK-\ ^ 

where 7= 1,2,3;  / = 0,1,...,/; j = 0,1,.,.,/. 

The whole set of Eqs. (30) - (32) with the respective index values defined by Section 1, 

Eq.(51) can be only used if all of the brick in the mosaic body are made from the same material. If 

some of the bricks are made from distinct materials, then respective values of / in (30), m in (31) 

and h in (32) should be excluded from consideration. 

Thus, in the algorithm and computer code developed, all boundaries between the bricks are 

first segregated into two groups: the first contains all boundaries between distinct material bricks 

and the second incorporates all boundaries between identical material bricks. Then, relations (13) - 

(15) are applied to both groups and relations (30) - (32) to the second group only. 

2.4  A Single-Index Form of the Continuity Relationships 

For the sake of compactness, equations (13) - (15) and (30) - (32) can be further written in a 

single-index notation. The equivalent of (13) - (15) is obtained as follows: 

U __ ~ = U (33) 
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U =U (34) 
H-(.l,m,n,x,8,ß) /d+(l,m+l,n,X,8,ß) V     ' 

U _ =U + (35) 
V   (l,m,n,%,y/,y) v   (l,m,n + l,%,\f/,y) 

where 

X~(l,m,n,y/,8,a) = S + (y/-l)(K + l) + I(J + l)(K + l) 

+{(a-l) + 3[j(Z,m,/t)-l]}(/ + l)(7 + 1)(£ + 1) 

A+(/,m,n,v/,5,a) = 5 + (v^-l)(if + l) 

+{(a-l) + 3[j(/,m,/i)-l]}(/ + l)(7 + l)(Ä' + l) 

ß-(l,m,n,x,S,ß) = S + J(K + l) + (x-V(J + V(K + l) 

+{(ß-l) + 3[s(l,m,n)-l]}(I + l)(J + l)(K + l) 

ß+(l,m,n,x,S,ß) = S + (z-l)(J + D(K + l) 

+{(ß -1) + 3[s(l, m, n) -!]}(/ +1)( 7 +1)( £+1) 

v-(/,m,n,j,^,r) = r(^ + l) + a-l)(-/ + l)(^ + l) 
+{(7 -1) + 3[s(/, m, n) -1]}(7 +1)(7 + l)(K +1) 

v+(/,m,n,^,^,7) = VA(ü: + l)-A:+a-l)(7 + l)(i<: + l) 

+{(y-l) + 3[s(/,m,n)-!]}(/ +l)(J + l)(K + l) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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Here, a,ß,j-1,2,3 and the values of /, m, n,  I,  m and n follow the respective expressions 

Section 1, Eqs. (41), (44) and (47). In addition, the following integer variables have been 

introduced: 

# = 1,2,...,/ + 1;   yr = l,2,...,/ + l;   5 = 1,2 ÄT + 1 (42) 

The earlier derived stress/strain continuity relations (2.30)-(2.32) are now transformed to the form 

A+(/+l,m,/i,^,5,a)+(7+l)(^+l) "    l    A""(/,m,/i,^,5,a) ""    2    A""(/,m,/i,^,5,a)-(7+l)(A'+l) ' 

/x+(/,m+l,/i,^,i8)+(^+l) ~    !    ii-(l,m,n9x,8,ß)~~    2    n-(l,m,n,x>8,ß)-(K+l) ^     * 

U .       Ä =Cil/ _       . -C0U _      . (45) 
v   (/,m,/i+l,j,v^,7)+l x    v   (l,m,n,x,W,Y) v   (/,w,/z,^,^,7)-l 

where 

A1=   /+1_    /~1, A2=-^ L 

cl ~ >   c2 ~  

Yet, the derived continuity relations (33) - (35) and (43) - (45) are not sufficient for solving 

boundary value problems for 3-D mosaic structures. Some additional considerations are required. 
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2.5   Classification of Special Junction Lines and Points 

The derived relationships expressing the displacement continuity (33) - (35) and stress/strain 

continuity (43) - (45) conditions, written for the interfaces in the mosaic body, each represents an 

ordinary equality. However, it is easy to recognize that there are also certain lines and points in the 

mosaic body where the continuity conditions are expressed as multiple equalities. Thus, further 

algorithmic considerations require first to reveal all types of special lines and points and then derive 

additional continuity relationships for them. 

Considering generic illustration presented in Fig. 2.1, the following three distinct groups of 

points and lines are identified: 

(i) Interior junction points (represented by the point "A" in the figure). These are 

the points of eight brick junction; all of these points are inside the mosaic body. 

(ii) Exterior junction points (represented by the points "a", "b", "c", "d", "e" and 

"fs in the figure), These are the points of four brick junction; all of these points 

belong to the exterior  of the mosaic body. 

(iii) Interior junction lines (represented by the open end lines "aA", "Ab", "cA", 

"Ad", "fA" and "Ae" in the figure). These are the lines offour brick junction; all of 

them are inside the mosaic body. 

It is easy to check that the groups (i), (ii) and (iii) cover all of the special points and lines 

which are possible in the case of a regular mosaic parallelepiped. However, for an arbitrary 

irregular mosaic structure there can be a number of additional cases (for example, the exterior 

junction point of seven bricks, the exterior junction line of three bricks, etc.). All of them require 

special consideration and provide their specific type of the continuity relations. Here, for the 

purpose of brevity we only address the above cases (i), (ii) and (iii). 
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Fig. 2.1: Illustration of the junction points and lines in the mosaic body. 

2.6  Continuity of Displacements at the Interior Junction Points 

First consider continuity of displacements at the interior junction points of a regular mosaic 

parallelepiped. These class of points is represented by "A" in Fig. 2.L  The following twelve 

equations should be simultaneously satisfied at each of the points: 

U = U 
A~(/*,/w*,/i*,J+l,£+l,a) A+(/*+l,m*,rt*,J+l,£+l,a) 

A""(/*,m*+l,/i*,l,Ä:+l,a) ~    A+(/*44,m*44,/i*,l,jr+l,a) 

A~(/*,m*,rt*+l,J+U,cO ~    A+(/*+l,/w*,/i*+l,y+l,l,a) 

A~(/*,w*+l,tt*+l,U,cO A+(/*+l,w*+l,/t*+l,l,l,a) 

Ai   (/*,m*,/i*,/+l,^+l,a) /z+(/*,ro*+l,/i*,/+l,£+l,a) 

jU   (/*+l,m*,#i*,l,£+l,a) /x+(/*+l,w*+l,n*,l,A'+l,a) 

jU   (/*,m*,/i*+l,/+l,l,a) jU+(/*,m*+l,/i*+l,/+l,l,a) 

(47) 
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u =u + ti~(l*+l,m*,n*+l,l,l,a) fi+(.l*+l,m*+l,n*+l,l,l,a) 

U =U   , 
v~ (l*,m*,n*,l+\,J+l,a)        v+(l*,m*,n*+\,I+\,J+\,a) 

U = U + (47) 
V~(l*+l,m*,n*,l,J+l,a) v+(/*+l,/n*,n*+l,l,i+l,a) 

u _ =u + 
v   (l*,m*+l,n*,I+l,l,a)        v+(/*,/n*+l,n*+l,/+l,l,a) 

v   (/*+l,/n*+l,rt*,U,a) v+a*+l,m*+l,n*+l,l,l,a) 

where a = 1,2,3; /* = 2,...,L; m* = 2,...,M; n* = 2,...,N. 

It is easy to show that nor a// of the above equations are independent. This can be seen, for 

example, if considering the following equalities obtained from the definitions (36) - (41): 

r 

r 

x+ 

x+ 

r 

r 

x+ 

x+ 

r 

r 

A+ 

/*,m*,n*,/ + l,A: + l,a) = iu
_(/:1:,m*,n*,/ + l,ü: + l,a) 

l*,m*+l,n*XK + l,a)-ß+(l*,m*+\,n*,I + l,K + l,a) 

l*+l,m*,n*,J + l,K + l,a) = ß~(l*+l,m*,n*,\,K+l,a) 

l*+l,m*+l,n*A,K + l,a) = n+(l*+l,m*+l,n*A,K + l,a) 

l*,m*,n*+l,J + lA,a) = fi~(l*,m*,n*+l,I + lA,a) 

l*,m*+l,n*+lAA,a) = ß+(l*,m*+l,n*+l,I + lA,a) 

/*+l,/n*,/i*+l,7+l,l,a) = //~(/*+l,/«*,« *+l,l,l,a) 

/*+l,m*+l,n*+l,l,l,a) = /i+(/*+l,w*+l,«*+l,l,l,a) 

/*,m*,n:,:,7 + l,Ä: + l,a) = v~(/*,m*,n*,/ + l,y + l,a) 

/*,m*,n*+l,7 + l,l,a) = v+(/*,m*,n*+l,/ + l,^ + l,a) 

i*+l,m^^/ + l,X>l,a) = v~(/*+l,m*,n*,l,7 + l,a) 

l*+l,m*,n*+l,J + lA,a) = v+(l*+l,m*,n*+lA,J + l,a) 
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/i+(/*,m*+l,n*,/ + l,AT + l,a) = v"(/*,m*+l,n*,/ + l,l,a) 

//+(/*,m*+l,n*+l,/ + l,U) = v+(/*,m*+U*+l,/ + l,U) (48) 

A+(/*+l,w*+l,/i^l,Är + l,a)==v"(/*+l,m*+l,/i*,l,l,a) 

A+(/*+l,m*+l,n*+l?l,l,a) = v+(/*+l,m*+l,/i*+l,l,l9a) 

There are different possibilities of combining (47) and (48). One of them leads to the following 

chain of seven equations: 

A~(/*,m*,/i*,y+l,j:+l,a) ""     A+(/*+l,m*,n*,7+l,Ä'+l,a) "~    ^+(/*,m*+UV+l,£+l,a) 

~    A+(/*+l,m*+l,/i*,l,£+l,a) ""    A"(/*,m*,/i*+l,y+l,l,a) ""    A+(/*+l,m*,/i*+l,J+l,l,a) ^     ^ 

""    jU+(/*,m*+l,/**+l,/+l,l,a) ~    A+(/*+l,m*+l,w*+l,l,l,a) 

If equations (2.49) are satisfied, then the displacements are continuous at all of the interior junction 

points. 

2*7  Continuity of Displacements at the Exterior Junction Points 

Consider next continuity of displacements at the points of four brick junctions at the exterior 

surfaces of the mosaic body. This class of points is represented by "a", "b", "c", "d", "e" and "f' 

in Fig. 2.1. In all equations of this section ß = 1,2,3. 

At the left exterior surface (x = x{) the following four relations should be satisfied: 

tl~(2,m*,n*XK+\,ß) ~     jd+(2,m*+l,n*XK+hß) 

u =u 
AT(2,m*,n*+l,U,j8) /*+(2,m*+l,/i*+U,l,j3) 

v""(2,m*,rt*fl,y+l,j3) v+(2,m*,#i*+l,l,7+l,j3) 

v~(2>m*+l,«*,lfl,j8) ~    v+(2,ro*+l,n*+l,l,l,/3) 

(50) 
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By using certain relations which follow from the definitions (36) - (41), Eq. (50) are reduced 

to 

p~(2,m*,n*,l,K+l9ß)~    /z+(2,m*+l,/i*,l,AT+l,j3) ~"     /i~(2,m*,/i*+l,U,j3).""     jU+(2,m*+l,/i*+l,l,l,j3) ^     ' 

If (51) is satisfied, then displacements are continuous at all junction points belonging to the surface 

The following displacement continuity  relations should be satisfied at the exterior junction 

points belonging to x = xL+l: 

U =U . 
ji   (L+l,m*,n*,/+l,^+l,j3) //+(L+l,m*+l,n*,/+l,A:+l,j3) 

AT(L+l,#n*,/i*+l,/+l,l,0) ~    /j+(L+l,/n*+l,#i*+l,/+l,l,/3) ^     ' 

v"(L+l,m*,rt*,/+l,y+l,j8) v+(L+l,ro*,/i*+U+l,./+l,ß) 

£/ =£7 + v   (L+l,m*+l,/i*,/+l,l,j3) v+(L+l,m*+l,/i*+l,/+l,l,j8) 

which are reduced to 

/r(L+l,m*,/i*,/+l,tf+l,j8) /i+(L+l,ro*+l,w*,/+l,£+l,j8) jLT(L+l,m*,/i*+l,/+U,j3) 

These equations are reduced to 

A~(/*,2,/i*,l,*:+l,j3) ""    A+(/*+l,2,n*,l,AT+l,i8) ""     A"(/*,2,/i*+l,l,l,i8) ~~    A+(/*+l,2,n*+l,l,l,/3) 

(53) 
/z+(L+l,m*+l,/i*+l,/+l,l,/3) 

Next, it is written for the exterior junction points belonging to the side y = y\i 

r(l*,2,n*XK+l,ß) ~    A+(/*+l,2,/i*,l,Är+l,j8) 

A~(/*,2,/i*+l,l,l,j3) ~" A+(Z*+l,2,/i*+l,l,l,j3) ^     ' 

v"(/*,2,/i*,/+l,l,)3) ~~ v+(/*,2,/i*+l,/+l,l,j3) 

v"(/*+l,2,n*,l,l,j3) "" v+(/*+l,2,/i*+l,l,l,j8) 

(55) 
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Considering the exterior junction points at y = y^+b the following relations should be satisfied: 

U =U 
r(l*,M+ln*,J+l,K+lß) Ä+(l*+lM+ln*,J + lK+l,ß) 

A~(/*,M+l,/j*+l,y+l,l,^) ~ A+(/*+l,M+l,/z*+l,y+U/3) ^ 

v"(/*,M+l,/2*,/+l,J+l,/3) ~~ v+(/*,M+l,/z*+U+U+l,/3) 

v~(/*+l,M+l,/i*,1,7+1,0) ~" v+(/*+l,Af+l,/i*+l,l,7+l,)S) 

These equations are reduced to 

A~(/*,Af+l,/i*,./+l,£+l,j3) ""     A+(/*44,M+U*,J+l,tf+l,/3) ~    A~(/*,Af+l,n*+lJ+,U,0) 
(57) 

-77 
A+(/*+l,Af+l,w*+l, 7+1,1,0) 

When considering external junction points belonging to z = Z\, one obtains 

A~(/*,m*,2,7+l,l,/3) ~    A+(/*+l,m*,2,7+l,l,j3) 

A*"(/*f/w*+l,2,U,j3) """"    A+(/*+l,ro*+l,2,U,j8) 

jT(/*,ro*,2,/+U,j8) "~    /x+(/*,/n*+l,2,/+U,j3) 

|T(/*+l,w*,2,U,j3)        //+(/*+l,ro*+l,2,U,j3) 

These equations reduce to 

ii ^z ii = /y = r/ f 59) 
A""(/*,m*,2,J+Ui3) A+(/*+l.m*,2,./+U,j3)        A~(/*,ro*+l,2,U,j3)        A+(/*+l,m*+U,U0) 

Finally, in the case of exterior junction points at  z = Zyy+i  the displacement continuity 

relationships are: 

U =   £/ 
A~(/*,m*,W+l,./+l,tf+l,i3) A+(/*+l,m*,W+l,J+l,A:+l,j3) 

£/ = t/ . „ (60) 
A-(/*,m*+l,tf+U,Jr+l,j8) A+(/*+l,m*+l,A/+U,K+l,0) 

AT(/*,m*,iV+U+l,Ä'+l,j3) ~    ii+(l*tm*+lN+\,I+ltK+ltß) 

AT(/*+l,m*,JV+U,tf+l,j3) ~     jz+(/*+l,m*+l,W+U,£+l,j8) 
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These are reduced to 

A~(/*,m*,W+l,/+l,A:+l,j3) ~"     X* (l*+l,m*fN+l9J+\,K+l,ß) "     A~(/*,m*+l,Af+U,^4-l?ß) 
(61) 

= U 
A4" (/*+l,m*+l, #+1,1,^+1,0) 

The obtained Eqs. (51), (53), (55), (57), (59) and (61) guarantee continuity of displacements at the 

whole exterior of a regular mosaic parallelepiped. 

2.8  Continuity Of Displacements At The Interior Junction Lines 

Next consider interior junction lines which are represented in Fig. 2.1 by the lines "aA", 

"Ab", "cA", "Ad", "eA" and "Af \ In all equations of this section y = 1,2,3. 

The following displacement continuity conditions should be satisfied at the interior junction 

lines parallel to the x-axis: 

U _ =U  . 
jd   (/*,/n*,/i*,;r,£+l,7) jU+(/*,m*+l,/i*,#,/i:+l,7) 

U = U . (62) 
^   (/*,/ii*,/i*+l,^,l,7) /x+(/*,m*+l,/i*+l,^,l,7) 

[/ _ = £/ + v   (/*,m*,«*,^,7+l,7) v+(/*,m*,/i*+l,^,J+l,7) 

[/ _ =U   . 
v   (/*,m*+l,/i*,^,l,7) v+(/*,m*+l,/i*+l,^,l,7) 

where Z* = 2,...,L + 1; m* = 2,...,M; w* = 2,...,N; # = 2,...,/. It can be recognized that not all of 

the above relations are independent. By using certain relations following from (36) - (41), the 

following is obtained; 

£/ _ =U  . = £/ _ 
jU   (/*,m*,w*,^,A:+l,7) ^+(/*,m*+l,rt*,^,AT+l,7) ^   (/*,m*,n*+l,£,l,7) 

(63) 
= £/  + ^+(/*,m*+l,/i*+l,^,l,7) 

The following displacement continuity relations should be satisfied at the interior junction lines 

parallel to the y-axis: 
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r(l*,m*,n*,\i/,K+ltY) A+(/*44,m*,ft*,y^+l,7) 

A~(Z*,m*,/i*+l,yU,y) ""     A+(/*+l,m*,/i*+l,yU,y) 

v   (/*,m*,rtV+l,y\7) v+(/*,m*,Ai*+l,/+l,v^,7) 

v   (/*+l,m*,rt*,l,y/\y) v+(/*+l,m*,/i*+l,l,y, 7) 

where /* = 2,...,L; m* = 2,...,M+ 1; /i* = 2,...,iV; ^ = 2,...,i. The above equations are reduced to 

A""(/*,w*,/i*,^»Ä'+l,7) ~~     A+(/*+4,m*,/2*,YA5*:+l,7) ~     A""(/*,m*,#i*+l,yU,y) ,_ 
(65) 

= £/ 
A+(/*+l,m*,n*+l,^,l,7) 

Finally, consider the interior junction lines parallel to the z-axis. The following displacement 

continuity relations should be satisfied there: 

A~(/*,m*,/iV+l,5,y) ~ A+(/*+l,m*,w*,J+l,5,y) 

A~(/*,m*+U*,l,<S,y) *"" A+(/*+l,m*+l,/i*,l,S,y) 

ji   (/*,m*,/i*s/+l,5,y) #+(/*,m*+l,n*,/+l,5,y) 

/T(/*+l,ro*,/**,l,£,y) ~~ jU+(/*+l,m*+l,/i*,l,5,y) 

where /* = 2,..„L; /n* = 2,.,„M; tt* = 2„.„iV + l; ^ = 2„.,5^. The above relations are reduced to 

A"(/*,ifi*,/?*,7+l,5,y) ~    A+(/*+l,m*,w*,J+l,Ä,y) ~    Ar"(/*,m*+l,«*,l,5,y) ~~     A+(/*+l,m*+l,/i*,l,S,y) 

Now it is easy to recognize that Eqs. (51) and (53) can be formally obtained from (63) by 

substituting /* == 2, # = 1 and Z* = L +1, # = / +1, respectively. Equations (55) and (57) can be 

obtained from (65) by substituting m* = 2, y = l and m* = M + l, y/^J + 1, respectively. And 

Eqs. (59) and (61) can be obtained from (67) by substituting n* = 2, 5 = 1 and n* = JV + 1, 

5-2C + 1, respectively. However, it is suitable to consider (51), (53), (55), (57), (59) and (61) 
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separately from (63), (65) and (67). The reason is that the latter group of equations provides the 

displacement continuity conditions along the (open-ended) junction lines and, thus, would not 

interact with external geometric boundary conditions. At the same time, the former group of 

equations provides the displacement continuity conditions at the exterior junction points, so these 

equations may interact with the imposed external geometric boundary conditions. 

The obtained "multiple" displacement continuity relations at the interior junction points (49), 

exterior junction points (51), (53), (55), (57), (59), (61) and interior junction lines (63), (65) and 

(67) should complement the "ordinary" displacement continuity relations (33) - (35). There use 

allows one to avoid repetitive kinematic constraints and, at the same time, guarantee continuity of 

displacements everywhere in a regular mosaic parallelepiped. As mentioned before, when solving 

irregular mosaic structures, some additional continuity relations should be applied. All of the 

necessary displacement continuity relations have been implemented in the developed computer code 

3D MOSAIC. 

Analogous derivations have been performed for the strain/stress continuity relations at the 

interior junction points, exterior junction points and interior junction lines. Those relations 

complement (2.43)-(2.45) and can be applied between identical material bricks. However, those 

have not been yet implemented in the computer code. 

2.9  External Geometric Boundary Conditions 

Now we will generalize the study where a single brick has been treated under various 

combinations of geometric boundary conditions formulated in terms of uniform displacements. 

Consider sth brick which exterior surfaces are defined by the coordinate values xt, x/+1? ym, 

)Wi' zn an<i Zn+\ • ^ ^e definition $ = 1+ (/ - 2) + (m - 2)L + (n - 2)L • M is used, where 

Z = 2,,..,L + 1; m = 2,...,Af+ 1; n = 2,...,JV + l, then each brick is uniquely identified in the mosaic 

body shown in Fig. 1.3. The maximum possible set of displacement boundary conditions for the 

sth brick is formulated as follows: 
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u?(xl,y,z) = u1£\y,z),   u(
y
s\xhy,z) = uft

s\y,z),   u'f\xl,y,z) = uf\y,z) (68) -X/     W'      -~y     \"fV»w       --x/      vy^/'     "Z     ^iV'^ Jt/ 

M^
)
(X/+1,J,Z) = ^

(
;+

)
I(};,Z),  «?)(^+1,y,z) = ^1

)(>',z),  ^J)(^+i,3',z) = "^J(3'^) (69) 

4J)(x,ym,z) = MJ(
i;

)Uz),   4'Wm,z) = «*ff)(x,z),  4')(*,;yin,z) = 4£)(*,z) (70) 

uij\xtym+1,z) = ul^i(x,z),   u{
y
s\x,ym+l,z) = uf^+{(x,z),   ui

z
s\x,ym+l,z) = u3

y
i^i(x,z)      (71) 

u?(x,y,zn) = ul£\x,y),   u^\x,y,zn) = u2£\x,y),   u[s\x,y,zn) = u^\x,y) (72) 

^WW^i^^   u(;\x,y,zn+l) = u2
z
(

n
s

+](x,y),   4s\x,y,zn+1) = u™(x,y) (73) 

where ^/^z),   u«™(y,z),  ^\x,z),   «J^Uz),  4„(*W), and Kz
y£}(*,;y) are given 

functions of the corresponding two coordinates; indices a, ß and y may take any combination of 

1,2 and 3. The maximum number of boundary conditions allowed by (68 ) - (73) is 18. 

Now consider one specific case, when uniform displacements are applied on each of those 

sides of the bricks which belong to the exterior of the mosaic body. So, 

u«'\y,z) = ua
xf

2^n\ u™(y,z) = u^L+l>m<n) (74) 

where m and n take all values from (1.41); 

Uym    {X,Z)-Un , Uym+](X,Z)      UyM+i V3) 

153 



where / and n take all values from Section 1? Eq. (44), and 

<e,(^>=«r"2>.   «&w=«c"j'+i) <76) 

where / and m take all values from Section 1, Eq. (47). The values of s in (74) - (76) are defined as 

s = 1 + (/ - 2) + (m - 2)L + (n - 2)L • M The right hand sides are given values. 

After substituting displacement approximation (4) in (68) - (73), using the property of 

Bernstein basis functions (8) and accounting for (74) - (76), the following equations are obtained: 

U =   ats(2,m,n) m) 

£/_ = M<Ma+l,m,ii) (78) 

X (Z*+l,m,#,p,5,o0       xL+\ 

U = ußMa'n) (79) U»+0,2.n.z.3,ß)     Uy\ U*> 

U ^   ßMM+U) (80) 

U . , ^^(U2) (81) 

[/ =Mr^(/.m,JV+l) (82) 

v   (/,m,/V+l,#,<p,7)        ZAM-1 

with the notations earlier introduced in (36) - (41). The obtained Eqs. (77) - (82) cover all possible 

combinations of external geometric boundary conditions for a mosaic body. 
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2.10   Further Algorithmic Considerations 

Our next task is to develop mathematical algorithms allowing to derive specific forms of the 

generic system of linear simultaneous equations (1.33) with account for the internal continuity 

conditions and external geometric boundary conditions. When incorporating external geometric 

boundary conditions, the required procedures can be outlined as follows. There are two steps of 

modifications of (1.33) which take place: 

(i) certain equations are dropped in the system and 

(ii) some additional terms are added to the right hand sides of the system remaining 

after step (i). 

The result is the following system of simultaneous equations: 

^K}={^}-K^K} (83) 

Set of numbers cp' ~ (0') depends on the specific case of external geometric boundary conditions, 

Set of numbers <P = (iß) is defined through the relationship 

@u®'^® (84) 

where <P = (0), and values of 0 were defined in Section 1, Eq. (35). Set of numbers (<p) is the 

same as (0), i,e,, 0 =(<p). Having relationship (84), it is easy to derive any specific form of 

(83); the only question is to identify &l =s (ft). 

Next step is to modify the strain energy expressions Section 1, Eqs. (12) or (15) by 

incorporating the continuity relations derived in Sections 2,4 and 2,6 - 2.8. The corresponding 

modifications consist of a rather straightforward, but very cumbersome algebraic manipulations, 

which are dropped here. 
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As is seen, the developed variational theory and mathematical algorithms allow one to 

obtain analytical expressions of the matrix elements in (83) and, in some cases also analytically 

derive the right-hand side vector. The only essentially non-analytical procedures are required for 

numerical integration of the above system of equations. 

Driver CDRV [3] was used in the current version of computer code 3D MOSAIC for 

solving sparse systems of linear simultaneous equations (83). Compressed pointer storage of the 

non-zero elements of matrix A is utilized, which provides huge savings of the RAM space and, 

accordingly, allows one to significantly increase number of bricks in the computational model 

using the same computer. The adopted compressed storage scheme is identical to that used in Yale 

Sparse Matrix Package [4]. Solution algorithm is based on LDU decomposition of matrix A, 

which is presented as L * D U = A, where L is unit lower triangular matrix, D is diagonal matrix, 

and U is unit upper triangular matrix. 

After the vector U is found, the displacements are computed directly from the 

approximation (4) by the triple series summation. Then, strains are directly computed from the 

strain-displacement Section 1, Eq. (4), Finally, the stresses are directly computed from the stress- 

strain Section 1, Eq. (1). Thus, any displacement, strain or stress component is obtained in the 

form of respective triple series. By prescribing three coordinate values, any strain/stress 

characteristic can be obtained for any point of the mosaic structure. Flow chart of the developed 

algorithm and computer code is shown in Fig. 2.2. 
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3.0     3-D STRESS/STRAIN AND PROGRESSIVE FAILURE ANALYSIS OF 
COMPOSITE BONDED JOINTS 

3.1     Introduction 

This section presents applications of 3-D variational Mosaic Model to stress/strain and 

progressive failure predictions in composite bonded joints. Theoretical background of the model, 

mathematical algorithms and specific computational routines utilized in the analysis have been 

described in detail in Sections 1 and 2. From the standpoint of a stress/strain analysis, the 

approach reported there can be viewed as a generalization of previous Mosaic approaches. The 

following new developments have to be mentioned: 

(i)    an algorithm allowing to avoid "dummy" material bricks and thus solve 

irregular mosaic structures has been elaborated; 

(ii) a full system of the stress continuity conditions has been formulated for all 

three sets of    the interfaces between the bricks; 

(iii) an algorithm allowing to incorporate the stress/strain continuity conditions 

between adjacent bricks made from the same material have been developed; 

(iv) a full set of multiple-type continuity relations at the specific points and lines 

inside the mosaic body has been derived; 

(v) the previous methodology, applicable for orthotropic bricks only, is now 

extended for the general case of anisotropy. 

A new computer code 3D MOSAIC was developed by Dr. Sergei Yushanov. The 

algorithmic developments (iii) and (iv) have been already incorporated in the code. The aspects (i) 

and (v) are underway, Besides, the code is significantly more capable than the previous version 

reported in [1]: instead of storing in the computer RAM the whole two-dimensional matrix of the 

resulting system of simultaneous equations, containing substantial portion of zero elements, the 

matrix is first transformed to the one-dimensional vector format, with all zero elements being 

eliminated. This allows one to substantially increase computational capability of the model 

(specifically, to increase the number of bricks or degree of the basis functions) on PC's, without 

158 



asking for a more powerful computer. For example, with a 1-D vector storage technique, it is 

possible to solve about 150 brick model with third degree Bernstein basis functions in all three 

coordinate directions on a PC with 128 MB RAM, while with a 2-D matrix storage the computer 

memory was exceeded when considering about 30 bricks. All numerical results presented in this 

section were obtained on the aforementioned PC's. 

As mentioned before, the new algorithm allowing to consider irregular mosaic structures 

has not been yet incorporated in the computer code. Thus, a dummy material bricks are used here 

to solve example problems for bonded joints. It is worthwhile to provide some explanation of this 

concept (which was originally proposed and illustrated on some examples in [2]), presented in 

Section 3.2. Sections 3.3 and 3.4 are devoted to the experimental validation of 3-D Mosaic Model 

approach. The experimental data (strain gage readings) have been provided by Dr. Ajit K. Roy. 

Two specific examples are considered: (a) a stepped solid Al specimen under uniaxial extension 

and (b) composite-to-composite adhesive bonded joint. A concept of application of the Mosaic 

Model approach for the problems of progressive intralaminar damage and interlaminar crack 

propagation is outlined in Section 3.5. This is based on the energy release rate analysis and uses 

the strain energy expression and other theoretical aspects of Section 1 as well as the capability to 

detach any adjacent bricks (of the same or distinct materials) inside the mosaic composite structure 

provided by the algorithm of Section 2, Section 3.6 presents illustration of this theoretical approach 

to 3-D analysis of crack growth in a double cantilever composite specimen. 

3.2     A "Dummy" Material Concept 

Schematics of a single-lap and double-lap (using different terminology, a double-doubler) 

adhesive joints and their Mosaic Model representations is shown in Fig. 3.1. 
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Single-lap Joint 

ti ■> iA iir- -T A A A f- * -s " A 

Double-lap Joint 

Adherend 1 Adherend 2 

E£3 Adhesive t^J    "Dummy" Material 

Fig. 3.1: A single-lap and double-lap adhesive bonded joints and their mosaic representations 

Thus, when adding a dummy material (which has to be sufficiently "soft" as to make no 

effect on the stress/strain state in the primary structure), the original boundary value problem is 

replaced by the boundary value problem for a full mosaic parallelepiped. The parallelepiped 

contains/<9wr different materials. Total number of bricks seen here is 9 for a single-lap joint (with 4 

dummy material bricks) and 25 for a double-lap joint (with 11 dummy material bricks). 
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Two more complex structural analysis problems, which can also be replaced by a full 

mosaic parallelepiped analysis, are illustrated in Fig. 3.2. In these cases, the parallelepiped is an 

assemblage of four and five distinct materials, respectively. The number of bricks seen here is 9 

(with 4 dummy material bricks) and 35 (with 12 dummy material bricks), respectively. There is a 

number of internal boundaries between the same material bricks as well as between distinct material 

bricks. 

One interesting peculiarity of the model can be recognized in Figs. 3.1 and 3.2: the more 

complex is shape of the primary structure, the less is relative number of dummy material bricks in 

the corresponding mosaic parallelepiped. In the other words, a computation efficiency of the 

dummy material concept would increase with increasing complexity of the geometric 

configurations. 

The advantages and disadvantages of the dummy material approach have been discussed in 

Section 1. 
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Stiffened Composite Panels 

A       A       A      A      A      A      A      A       A - '--  1-  ',- '-.    ^       A      •*•      A       •"•      A      ^      A      A      A 

A      A      A      A      A      A   |^^^^Wg<^^^^^j^|^Gfg^«^SH^^n    A      A      A      A      A      A 
"*A""^ä"" A^ST^A™"^A"l|8^^^^"^v^^^^^^^^^^^^^^^^^^ArjgH'"lA""",A—^F™A ""S™^A™ 
*      A     A      A      A      A      •^»w^V^S/^Si^^^^^^^^^^^^SrraB^      A      A      A      *      A      ^ 

-•-   -■■ IfinraMVi  .A;   .^■^.'' .^.''.  •■ilt|. W'OT IW'WJM ^   ■** 

Composite Panel 

!>■/■■« 
iV.V Adhesive 

Composite Stiffener 

h   A   ,-p 

Core 

"Dummy" Material 

Figure 3.2.   Examples of adhesively bonded stiffened composite panels and their mosaic representations 

3.3     A Comparison of the Analytical and Experimental Results for Stepped 
Aluminum Specimen 

In this section we compare analytical results obtained with 3-D Mosaic Model approach and 

experimental data provided by Dr. Ajit K. Roy for experimental specimen shown in Fig. 3.3. 
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(a) 

Fig. 3.3: Schematic of the test specimen (a) and mosaic representation of its 178th part (b). 

The following geometric parameters are used: 

a = 4m.,    ax = a2 = 2m.,    b = 0.5m.,    h = 0.405m.,    ^ = 0.1275m. (1) 

Properties of the materials used in the analysis are: 

E = 10.15Msi,    v = 0.33 (2) 

for Al and 

Ed=l0.15Ksi,    vd=033 (3) 

for the dummy material. 
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Third degree Bernstein basis function were used for the displacement approximation in ail 

three coordinate directions. Brick distribution in the mosaic body is schematically shown in Fig. 

3.4. 

'2 a1 L ÄL+1 

Fig. 3.4: Schematic of a nonuniform mesh of the bricks. 

M+1 

The coordinates # * = fli and z * ~fa identify location of the boundaries between distinct material 
l l n 

bricks (in this case between Al and the dummy material). The following parameters are further 

introduced to describe nonuniform brick meshes: 

%^Xl    Xl~l    for / = 2,3„..,Z*-1;   & -%M    *M    for 1 = 1* X+ 19...,L-1 (4) 

q^ym-ym-l     for   m==2,3„..,M (5) 

—    n     ^n—\ 
zn+2     zn+\ ^1==±o_isdL   for n = 2,39...,n  -1;   £2 =   w+2      *+i    for n = n\n  +l,...,iV-l (6) 

Specific values of L, M, iV, /*, £l5 £2, 
r?' n*> Ci anc* C2 are giyen for each computational variant 

in Table 3.1. 
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Table 3.1. Characteristics of the brick meshes used in the analysis 

Mesh No. I M AT /* 6 & n * 
n Ci £2 

1 10 8 6 6 6 - 5 6 6 

2 10 8 6 4 4 - 5 4 4 

3 12 8 7 4 4 - 5 4 4 

4 10 10 6 4 4 - 6 4 4 

5 12 10 7 4 4 - 6 4 4 

6 12 10 7 6 6 - 6 6 6 

7 8 8 5 6 6 - 5 4 4 

8 8 2 8 5 6 6 5 5 4 4 

Two types of strain gages have been used in the experimental studies of Dr. Ajit K. Roy: 

Gage Type I (GTI) having length g\ =0.032m. (0.813mm) and width glw =0.060w. (1.52mm) 

and 

Gage  Type  II  (GTII)   having  length   gj1 =0.015m.   (0.381mm)   and   width   g% =0.020m. 

(0.508mm). 

The strain gage placement is indicated in Fig. 3.5 (shown not in scale). The distance 

Ax = 0.25in. (6.35mm) and Az = 0.02m. (0.508mm). Strain gages 1, 2 and 5 measure £z, while 

strain gages 3 and 4 measure £x. The experimental strain magnitudes have been normalized by the 

165 



measured value of "far field" longitudinal strain e® in the thin part of the specimen, and the 

analytical strains have been normalized by the analogous far field longitudinal strain. 

When comparing experimental and analytical results, the computed strains have been 

averaged     over     the     respective     strain     gage      area.      For      GTI      this      area     is 

gi =g/xgi= 0.032m. x 0.060m. and for GTII this is g% = gj1 xg% =0.015m. x 0.020m. 

Selected strain distributions are shown together with the bars indicating the respective averaging 

intervals for GTI in Figs. 3.6 - 3.8. The curves plotted in Figs. 3.6 and 3.7 correspond to the 

"corner level" z = hv Keeping in mind that the averaging has been performed along some finite 

interval in the ^-direction, showing strain variations for one z value may be not sufficient. Thus, 

additional illustration of the strain variations corresponding to different z levels is presented in 

Figs. 3.9 and 3.10. Indeed, even at some small distance from the level z = hx the strain variations 

change dramatically. Hence, the magnitudes of averaged strains should be rather insensitive to the 

strain values at the point {x = a1,y = Z?5z = /z1}. 
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y=b 
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Ax 

z^ 
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y=b 

Ax 
I 

x=aH 

Fig. 3.5: Schematic of the strain gage placement (not in scale). 

Analytical and experimental results for strain gages 1-5 are presented in Table 3.2. It is 

seen that there is no significant difference among the analytical results obtained with Meshes 1-7 

(all these meshes contain only one brick in the y-direction). Analytical predictions are rather close 

to the readings of strain gages 39 4 and 5. The discrepancy is a little higher for strain gage 2. The 
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most substantial discrepancy is observed for strain gage 1 (of both types I and II): the analytical 

predictions are about 4-5 times higher than the experimental data. 

Table 3.2. Experimental and analytical strains in the stepped specimen 

Gage No. and 

Type 

1 

(GTI) 

1 

(GTII) 

2 

(GTI) 

3 

(GTI) 

4 

(GTI) 

5 

(GTI) 

Specimen No. Experimental Strains 

1 -0.01 0.05 -0.12 0.12 0.34 0.10 

Mesh No. Analytical Averaged Strains 

1 0.036 0.235 -0.227 0.160 0.444 0.075 

2 0.039 0.239 -0.235 0.158 0.435 0.095 

3 0.039 0.239 -0.235 0.158 0.435 0.094 

4 0.037 0.237 -0.227 0.160 0.444 0.075 

5 0,036 0.224 -0.220 0.149 0.405 0.086 

6 0.035 0.213 -0.202 0.134 0.386 0.069 

7 0.033 0.233 -0.222 0.157 0.435 0.093 

8 0.007 0.129 -0.219 0.127 0.432 0.094 
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As is seen from Table 3.2, strain values for gage 1 (especially type 1) obtained with Mesh 

8 are significantly lower than those obtained with Meshes 1-7. Results obtained with Mesh 8 are 

much closer to the experimental data for gages 1 and 3. So, it seems that using two bricks in the y- 

direction can significantly improve the analysis. To explain this effect, strain variations in the y- 

direction computed with Meshes 7 and 8 are compared in Figs. 3.11 and 3.12 for the x and z 

coordinates corresponding to the center of gage 1 (GTI). Surprisingly, the difference does not look 

significant. In order to further study this issue, additional illustrations are presented in Fig. 3.13. 

Variations of £zle® along the width of gage 1 (GTII) are shown for six values of z inside the gage 

length. Figs. 3.13(a-c) reveal that the negative strain values are considerably higher near the corner 

when using Mesh 8. And, keeping in mind that the averaged strain is positive, this may explain the 

aforementioned result. Possibly, if using more bricks in the ^-direction, the discrepancy between 

analytical and experimental results can be further reduced. 

It has to be emphasized that the ability of using finer discretizations in the y-direction is 

only possible in a 3-D analysis; there is no such opportunity when solving 2-D plane strain or 

plane stress problems. 

3,4     A Comparison Of The Analytical And Experimental Results For Composite* 
To-Composite Adhesive Bonded Joint 

Consider next a double-lap adhesive bonded joint of unidirectional composites shown in 

Fig, 3.14, Experimental specimens of this configuration have been tested in [5], 
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Fig. 3.14. Double-lap adhesive bonded joint specimen 

The following geometric parameters have been used: 

a\ = #3 = 2.25m. (57.15mm);    a2 = \in. (25.4mm);    la = a^ +2a2 +a3 = 6.5m, (165.1mm); 

(7) 

2b = lin. (25.4mm);   hx = h3 = 2^ = 0.09m. (2.286mm);   /ia = 0.005m. (0.127mm) 

All of the adherends are made from 16 plies of unidirectional Graphite/Epoxy tape AS4/3501-6; the 

following elastic characteristics have been adopted in the analysis: 

EL = \9.3Msi (l33Gpa);   ET = L55Msi (WJGpa);   GL = 1.02Mri (7.03Gpa) 

GT = 0.59Msi {A.OlGpa);    vLT = 0.30 

(8) 

The bonding adhesive is Cytec FM300-2K film with 3% woven glass scrim with the following 

elastic characteristics: 
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E = 0.506Msi (3A7Gpa);   v = 0.30 (9) 

In order to save computational time and required memory, it is suggested to simplify the 

problem by reducing analysis of the structure shown in Fig. 3.14 to its l/8th part shown in Fig. 

3.15. 

adhesive layer ABCDA'B'CD' 

Fig, 3,15: The reduced bonded joint element 

This seems to be possible due to symmetry of the geometric configuration and material 

properties. Indeed, it is reasonable to assume that displacement ux is zero along the cross-section 

perpendicular to the %-axis and passing through the center (x = 0) of the structure. Also, 

displacement uy is zero along the cross-section perpendicular to the }>-axis and passing through the 

center of the structure, and displacement uz is zero along the cross-section perpendicular to the z- 

axis and passing through the center of the structure. Besides, we substitute the static boundary 

condition at the right loaded end for the kinematic boundary condition, assuming that uniformly 

distributed displacement uQ is applied there (it is easy to establish correspondence between applied 
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force and applied displacement)« After that, the structural element shown in Fig. 3.15 has to be 

solved under the following set of boundary conditions: 

ux = 0 at x = 0;   UX=UQ at x = a;   uy = 0 at y = 0;    wz = 0 at z = 0 (10) 

Further, following the dummy material approach, the structural element of Figure 3.15 is replaced 

by the mosaic parallelepiped shown in Fig. 3.16. Thus, in this case we have an assembly of three 

different material bricks: unidirectional Gr/Ep composite, adhesive and dummy material. The 

problem is more complex than in Section 3.5. Specifically, there are two lines (AA' and BB') of 

three material junction, which are certainly suspects for the stress singularity. So, it is reasonable 

to use nonuniform computational meshes of bricks with higher refinement toward the lines AA? 

andBB'. The brick distribution applied in this analysis is schematically shown in Fig. 3.17. Due 

to small thickness of the adhesive layer, uniform brick mesh is used through its thickness in all 

variants. 

2 a 

adhesive 

Fig. 3.16: Mosaic representation of the bonded joint structural element. 
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Fig. 3.17. Schematic of the brick mesh. 

kL+1 

M+1 

The mesh parameters introduced by (4) and (5) still can be utilized, but the following should be 

applied in place of (6): 

£j=-£ —  for n = 2,3,,..,n* -1; ^2 === 1 ^or n-vT^n* + l,...,n** -1; 

^3 = Zn+2 ~Zn+\     for   „ = „**i/l**+l A^-l 
^rc+1 ~~ ^n 

(ID 

where z * =/z2 and z ** =A2 + ^V Specific values of L,M, N, /*, £1? £2> *?> n*> n**> Ci an<^ 

£3 are given for each computational variant in Table 3.3. Third degree Bernstein basis functions 

have been used for all three coordinate directions (e.g., / = 7 = K = 3) with the Meshes 1, 2 and 

4, while with the Mesh 3 it was taken / = K = 4, 7 = 3. 
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Table 3.3. Characteristics of the brick meshes used in the analysis. 

Mesh No. L M N /* Si & 7? * 
n 

** 
Ci ' C3 

1 10 1 10 6 5 5 - 5 7 5 5 

2 8 1 15 5 6 6 - 5 9 6 2.5 

3 8 1 8 5 6 6 - 4 6 6 6 

4 8 2 8 5 6 6 6 4 6 6 6 

In the experimental studies reported in [5], strain gages of Type II (GTII) have been used. 

Placement of transverse gages 1 and 2 (measuring £z) and longitudinal gages 3 and 4 (measuring 

£x) is schematically shown in Fig. 3.18. The distance Ax is 0.25m. (6.35mm). 

y=b 

S! \ aanesive 
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i 

 *#» ■  

y=b 

-a- 
adhesive 

i 

AX 
L^ ► 

'             i» =  

Fig. 3.18: Schematic of the strain gage placement (not in scale). 
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Variations of the transverse and longitudinal strains in the x-direction along the interface between 

upper adherend and adhesive and two other z-levels computed with Mesh 1 are shown in Figs. 

3.19 and 3.20. It is seen that gages 2 and 4 are located in the zone of rather smooth strain 

variation, though the strain values are still sensitive to the distance from the interface. So, even at 

some distance from the corner, the averaged strains may significantly differ from the strains 

computed exactly at the interface. As seen in Figs. 3.19b and 3.20b, gages 1 and 3 cover the 

region of highest strain gradients. Here, strain variations change severely along the gage length (in 

the case of gage 1) or width (in the case of gage 3). So, the averaged strains may severely differ 

from the strains computed exactly at the interface. Accordingly, readings of gages 1 and 3 should 

be highly sensitive to the gage size and any small misplacement of the gage in the x or z-direction. 

The obtained analytical results are compared to the experimental data from [5] in Table 3.4. 

Table 3.4. Experimental and analytical strains in the double-lap joint specimen. 

Gage No. 1 2 3 4 

Specimen No, Experimental Strains [5] 

1 0.050 -0.193 0.246 0.393 

2 0.201 -0.193 0.192 0.310 

Mesh No. Analytical Averaged Strains 

1 0.517 -0.217 0.034 0.340 

2 0.515 -0.209 0.035 0.335 

3 0.527 -0.223 0.035 0.345 

4 0.527 -0.214 0.037 0.350 
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When considering results for gage 1, it is seen that experimental data for two (supposedly 

identical) specimens differ by a factor of 4. The analytical results are about 4 times higher than the 

mean experimental strain between specimens 1 and 2. At the same time, the analytical results 

themselves are very consistent; their mutual variation is only about 2% when changing number of 

bricks in all three coordinate directions, mesh density near the corner and the interface, and even 

degree of the basis functions. We do not have an explanation why there is a substantial difference 

between experimental data and analytical predictions for gage 1. Note that the experimental data 

and analytical prediction for gage 2 are very close. 

When considering experimental results from gage 3, the difference between specimens 1 

and 2 is not so significant. Again, the obtained analytical predictions are mutually consistent and, at 

the same time, they are about 6 times lower than the mean experimental strain. Finally, it is 

recognized that all of the analytical predictions for gage 4 fit in the middle between the experimental 

data for specimens 1 and 2. 

The presented comparison of analytical and experimental data shows that the developed 3-D 

analysis provides very accurate strain predictions for a double-lap composite-to-composite 

adhesive bonded joint, with the exception of a very small region near the end of the overlap zone. 

The revealed strain discrepancy in that region requires further investigation. 

3,5     The Concept Of 3-D Progressive Failure Analysis 

The Mosaic Model variational approach described in Sections 1 and 2 and applied for 

stress/strain analysis of composite bonded joints in this section, can be further developed for the 

analysis of progressive failure processes in composite structures. Obviously, in order to develop 

predictive methodology capable to conjointly account for a dispersed progressive damage and 

various types of developing cracks, the failure models and analytical tools should be very diverse. 

It is on demand to predict damage and crack initiation, growth, accumulation and ultimate failure of 

composite structures. The models should be able to identify failure modes corresponding to each 
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local failure event during the mechanical loading history. It is important to emphasize that both the 

intralaminar and interlaminar types of failure should be covered by the required analysis approach. 

For a generic illustration, we can use a mosaic parallelepiped considered in Section 1. 

Assuming that each brick may have distinct elastic and strength characteristics, and that the mosaic 

body is exposed to a nonuniform stress/strain state, it is clear that progressive failure modeling is a 

complicated task« Once a local initial failure occurs at some site inside the parallelepiped, the 

displacements, strains and stresses may significantly redistribute in the whole mosaic body due to 

the local reduction of elastic properties. Consequently, the stresses are relieved within the damaged 

brick and, at the same time, elevated in all other bricks in the body. Indeed, such a stress elevation 

will affect mostly the adjacent bricks which become the primary suspects for the subsequent failure 

occurrence. Following this pattern, failure may propagate under the fixed load level (due to the 

successive stress redistributions around the growing zone of damaged material) or under the 

increasing load (due to the increasing stresses in all of the bricks). This process might involve a 

single failure mode (matrix cracking, fiber breakage, fiber-matrix debond, etc.) as well as several 

failure modes simultaneously. Since a composite structure will usually not survive extensive fiber 

failures, the progressive intralaminar failure is often limited to the gradual dispersed matrix 

damage. 

The progressive interlaminar failure is usually related to the growing delamination. In this 

case the modeling approach should be rather different than for the case of an intralaminar failure. 

Delamination means that some free surface is created between two distinct materials. Again, in 

terms of the Mosaic Model, this effect can be accounted as the separation of two adjacent bricks 

along their boundary. Thus, formulation of the boundary value problem for a mosaic body 

presented in Sections 1 and 2 have to be modified by relaxing some of the displacement continuity 

conditions between the bricks. Creation of the initial delamination zone can be predicted (arguably, 

indeed) using some stress/strain based phenomenological failure criterion, while analysis of the 

growing delamination requires involvement of some fracture mechanics tools and criteria. 
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Generally, the intralaminar and interlaminar failure processes are not separable. It is well 

known that one possible cause of delamination is a matrix crack reaching the interface. On the other 

hand, delamination interacts not only with the matrix cracks, but may also cause fiber buckling, 

debond from the matrix and failure. Thus, in order to realistically predict ultimate failure of a 

composite structural part and identify its corresponding failure modes, both the intralaminar 

damage and interlaminar failure should be considered interactively. 

First, a 3-D stress/strain analysis is needed for the originally undamaged structure. Next, 

an initial failure criterion for the composite material has to be chosen. This is a very important issue 

that was discussed in a number of special review papers. In particular, some authors has stated that 

the simplest maximum stress/strain criteria typically overestimates the strength of the lamina, 

because the interaction of stress components is neglected. On the other hand, the "interactive" 

tensor polynomial criterion which relates all six stress components in a single equation, has been 

recently criticized (see, for example, a discussion on this issue of Hart-Smith [6]) as having no 

mechanical substantiation and contradicting some obvious physical phenomena. Besides, when 

applying this type of phenomenological failure criterion it is not possible to identify the failure 

mode, which is of the primary value in any progressive failure analysis. 

Experimental observations of failure in unidirectional fiber composites indicate that there 

are two primary modes: a "fiber" mode in which the composite fails due to fiber rupture in tension 

or fiber buckling in compression, and a "matrix" mode in which multiple planar or curved cracks 

parallel to the fibers or inclined with respect to the fibers, occur. A rather simple failure criterion 

introduced by Hashin [7] separates these two principal failure modes and also accounts for distinct 

failure mechanisms in tension and compression in the fiber direction as well as in tension and 

compression in the transverse direction. Importantly, the same type failure criterion can be used to 

predict the delamination initiation. Hashin's failure criterion seems to be suitable for the purpose of 

this study. Also, some newly introduced failure criteria of Hart-Smith [6] can be tried. 

Next aspect of progressive failure analysis is to model damaged material, which is 

commonly viewed as the reduction of its elastic characteristics. This is still a challenging issue, 
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because any reasonable stiffness reduction approach of an anisotropic composite requires certain 

substantiation from the standpoint of micromechanics. It has to be noted that the existing 

methodologies of modeling damaged composites on a micro-level are still very limited. Due to this, 

the instantaneous stiffness reduction to zero is still the most common approach in the structural 

analysis. Another rather simple stiffness reduction approach usually called "Ply Discount Method" 

(PDM) also finds applications. However, there are several drawbacks of the PDM discussed in 

literature. The PDM neglects out-of-plane stress components and disregards the ability of load 

redistribution through the inter-ply boundary. Accordingly, the ply-by-ply interface failure 

mechanisms are discarded through the independently applied failure criterion. For example, when 

applied to cross-ply laminates, the PDM cannot describe the experimentally observed dependence 

of the laminate stiffness reduction on the transverse crack density. It is a common opinion that the 

PDM is not sophisticated enough to accurately characterize progressive matrix damage processes. 

Some other models assume that the failure will not extend throughout the entire 90° layers 

but localize in regions distributed lengthwise. So, outside the failed regions, the 90° layers are still 

effective in supporting the load, while in the failed regions only the 0° layers are able to carry the 

load. A number of theoretical approaches have been developed in last 10 years to characterize 

constrained matrix cracking and stiffness reductions both in cross-ply and angle-ply laminates. 

Some comparisons with experimental data revealed that the elastic moduli calculated by the PDM 

provide good approximations to the observed residual elastic moduli of cross-ply laminates at the 

crack saturation state. In particular, it was found in [8] that the effective Young's modulus of a 

[0/90ft]s laminated specimen in the axial direction approaches asymptotically the solution 

provided by the PDM under the condition that matrix cracks are saturated. Typically, the PDM 

overestimates the longitudinal modulus reduction, and this overestimate increases with increasing 

transverse constraints on the cracks. 

Most of the theoretical works in composites damage mechanics have been focused on 

predicting the threshold stress for the onset of cracking and the spacing between the cracks. Crack 

density in each layer has been considered the major variable that characterizes the effect of matrix 
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cracks on stiffness reductions. The "Characteristic Damage State" that consists of nearly uniform 

spacings between the cracks in individual off-axis plies was introduced in [9]. These crack 

spacings were found to depend on ply thickness, fiber orientations, stacking sequence, etc. 

Another characterization, using the "Internal State Variables" was presented in [10]. One of the 

limitations for these variables is that the matrix crack size and spacing should be uniform. 

However, due to a random nature of the transverse cracking, existence of curved transverse cracks 

and partially angled transverse cracks, the uniformly distributed planar transverse crack assumption 

may be not realistic. It was observed experimentally that there are more curved than planar 

transverse cracks with increasing 90° layer thickness of a cross-ply composite. 

A common concern is how to obtain the required stiffness reduction parameters needed in 

any progressive damage modeling approach. For example, the ratio of the total length of failed 

regions to the length of the specimen should be given in order to implement the Gradual Failure 

Model of Hahn and Tsai [11], It is not clear how to obtain this value directly. The transverse crack 

density was used in a number of other theories. This input parameter has to be defined as a 

function of load value for any specific lamina material and ply lay-up, which seems impractical 

experimental task. On the other hand, in order to define this parameter theoretically, one have to 

solve a complex micro-mechanics problem. Another possible approach was proposed in [12]: to 

use four phenomenological material constants for the characterization of intralaminar cracking. It 

was suggested in the above work to perform set of experimental measurements of the moduli 

changes for known crack densities in a given laminate. 

It follows from the existing literature study that serious difficulties are expected when 

attempting to apply any scientifically sound method, which is more sophisticated than the PDM, 

for the progressive damage modeling of composite structural elements exposed to nonuniform 

stress/strain fields. As mentioned above, the PDM, being asymptotically correct, overestimates the 

stiffness reductions. So, when using this approach, the safety factor would be increased, what is 

acceptable for many practical designs. 
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Another problem that seems to be important in the context of our task is obtaining the 

whole set of reduced elastic constants, which is needed in the structural analysis. However, a few 

works are known where the reduction of more than one constant (namely, the transverse elastic 

modulus) was reported. The importance to reasonably reduce other elastic constants was illustrated 

in [13], where it was shown that in the case of highly constrained transverse cracking in [0/90°]4s 

graphite/epoxy laminate, the Poisson's ratios may change significantly, although a comparatively 

little change may occur in the Young's moduli. 

One possible scheme (compatible with the maximum stress failure criterion) for the 

reduction of the in-plane elastic properties of a composite lamina is presented in Table 3.5 [14]. 

Here, G\, c2 
m& ?n are the in-plane stress components normalized by their ultimate values (used 

in the maximum stress criterion); Ex , E2 and G12 are elastic and shear moduli of undamaged 

material; Eh E2 and G12 are elastic and shear moduli of the damaged material. Here, index "1" 

corresponds to the fiber direction and "2" to the transverse direction. Parameters ax < 1, a2 < 1, 

a3 < 1 and a3 < 1 characterize reduction of the moduli (as the simplest guess, those can be set 

zero). They can be considered independent or dependent on the corresponding strain components. 

Rigorously, these parameters are functions of the matrix crack density, fiber break density or other 

variables characterizing the damaged state of the lamina. Note that in the presence of cracks the 

undamaged (transversely isotropic) material becomes an orthotropic material (if all cracks are 

aligned in the directions 1 and 2) or even monoclinic material (if there are off-axis cracks). Thus, 

additional elastic constants may appear in the analysis. 

191 



It is possible, though not trivial to generalize the above stiffness reduction scheme for the 

3-D case. Accordingly, more reduction coefficients will be involved, and in the presence of 

inclined cracks the damaged unidirectional lamina will represent a generally anisotropic material 

characterized with 21 independent elastic constants. 

Table 3.5.Reduction scheme for the elastic characteristics of a composite lamina [14] 

Variant No. Failure Mode Ei/E? E2IE2 Gl2/Gn 

1 äx>l «l a2 «3 

2 ä{<-l, ä2>0 ax a2 «3 

3 <7] <-l,  G2 <0 «l 1 «3 

4 C72>1 1 «2 «3 

5 ö2<-\ 1 «2 «3 

6 f12>l,  G2>0 1 «2 «3 

7 f12 ^1, <72 <0 1 1 
«3 

The problem how to determine cci, 0C2, 0C3, a    and other analogous parameters that will 

additionally appear in the full 3-D analysis was discussed above. One rather common approach is 

to voluntarily set some of them zero or prescribe some nonzero values. When used in any 

structural analysis, this approach would allow to reflect some qualitative features of the gradual 

failure process, however this seems too coarse for the purpose of the ultimate failure predictions. 

The major drawback is that there is no relation to the micromechanical characteristics of any 

specific composite material. 

Another possible approach is to adopt the Ply Discount Method. This asks to assume that at 

the  stress  level  which  corresponds  to  the  failure  initiation,  the  crack  saturation   state   is 
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instantaneously achieved through the entire volume of the first failed brick. This assumption may 

result in an overestimated reduction of the elastic characteristics, but would allow one to reasonably 

incorporate the damaged state parameters without concerning about the actual crack density at each 

load level. 

At the next level of complexity, the stiffness reduction parameters may be directly related to 

the actual state of damaged material by using some information from the micromechanics analysis. 

And, finally, those can be evaluated from the experimental data. The expected practical difficulties 

when applying these two approaches have been outlined above. 

Another important aspect of the analysis is how to define dimensions of the initial damage 

zone (e.g., how to establish the first damaged brick)? This issue is directly related to the specific 

boundary value problem and, accordingly, to the stress/strain fields inside the brick. In any 

practical structural analysis situation (and especially for bonded joints), high stress/strain gradients 

will take place. Therefore, when using any first-ply failure criterion, the strains/stresses should be 

first averaged for the entire brick volume. Definitely, there is no general recipe how to choose the 

initial damaged brick as well as the subsequent damaged bricks during the progressive failure 

analysis. In each step, the decision should be made considering specific stress/strain variations, 

available computer facilities, time limitations, etc. 

After the dimensions and the reduced elastic properties of the first damaged brick have been 

established, a new 3-D distribution of stresses/strains can be computed inside the whole mosaic 

body, and the second step of the progressive failure analysis can be performed. By applying again 

the chosen failure criterion to the newly averaged stress/strain fields in all of the bricks, one or 

more additional damaged bricks and corresponding failure modes may appear. Accordingly, the 

stiffnesses have to be reduced in all those bricks, and the analysis will go to the next cycle. This 

process can be continued till some ultimate state of damage (fiber breakage in all of the plies, 

specifically) is achieved. 

The prototype of the described analysis approach have been developed and illustrated on 

the example of 3-D progressive failure of cross-ply laminated plates exposed to transverse bending 
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in [14]. The most interesting feature of the results presented there is the revealed dramatic change, 

after each failure event, in the stress fields computed for the damaged bricks and considerably 

elevated stresses in their undamaged neighbors. A novel advanced algorithm and computer code 

aimed at 3-D progressive failure analysis of mosaic composite structures, which utilizes the 

described intralaminar progressive failure approach, is under development. 

As mentioned above, there is another aspect of progressive failure prediction methodology, 

namely, the interlaminar failure analysis. In terms of the Mosaic Model this means that cracks 

propagating between the bricks have to be analyzed. This problem necessarily requires to apply 

some fracture mechanics tools and crack propagation criteria. The major steps of this analysis can 

be briefly formulated as follows: 

(a) introduce initial debond crack between two bricks (made from the same or distinct 

materials) in the zone of highest transverse stresses; this is accomplished by relaxing the 

displacement continuity conditions along the corresponding surface element; 

(b) perform stress/strain analysis of the mosaic structure containing the crack(s) using 3-D 

Mosaic Model with the altered internal continuity conditions; 

(c) compute potential energies of each brick and the whole mosaic structure in the presence 

of the debond crack(s); 

(d) give some increment to the crack length and repeat steps (b) and (c) for a larger crack; 

(e) evaluate energy release rate using results of (c) and (d); 

(f) apply the critical energy release rate criterion and define if the crack growth guess was 

correct; if yes, then give another increment to the crack; if no, then increase the load level. 
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One specific problem illustrating application of the developed 3-D variational analysis to the 

interlaminar crack propagation modeling is presented next. 

3.6     3-D Analysis Of An Interlaminar Crack Propagation 

In general, fracture analysis includes two basic steps: (a) fracture initiation, and (b) fracture 

propagation. Appropriate fracture initiation criterion is required for each specific situation. Here, 

only step (b) is analyzed assuming that some initial crack of given length already exists» One 

specific problem of the interlaminar crack propagation under opening (mode I) will be analyzed in 

this section as to illustrate the application of 3-D Mosaic Model to linear fracture mechanics. 

Consider a composite beam delaminated along its midplane over a length and loaded at the 

ends by peel displacement uQ as shown in Fig. 3.21. Strain energy of the whole specimen is 

calculated as 

P^Pis) (12) 
s 

where Pw is the strain energy of the sth brick evaluated according to (1.12). The strain energy 

release rate is defined as 

G ==P(fl2)"^+^)=   AP (13) 
1 2bAa IbAa 

where P[a2) is strain energy of the specimen with an interlaminar crack of length a2; Aa is the 

virtual crack extension length, and 2b is width of the beam. Crack growth occurs when the strain 

energy release rate reaches its critical value GIc. 
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Fig. 3.21: Double cantilever beam under peel mode loading. 

3To analyze delamination growth, the problem shown in Fig. 3.21 need to be solved. Due to 

symmetry, the problem can be reduced to l/4th part of the double cantilever beam as shown in Fig. 

3.22. The boundary conditions are formulated as follows: 

ux\   n=0 (14) 

u. = 0,      w-L,  . n =0 (15) 

z\x-a\+a2,  z~h        0 
(16) 

where uQ is the applied peel displacement. Boundary condition (14) implies that the left side of the 

specimen is fixed, conditions (14) are result of the problem symmetry, and (16) is the external peel 

loading condition. Note that no conditions are imposed at the surface of the crack defined as 

üi <x<cii +a2, z = 0. 
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Fig. 3.22. Schematic of the l/4th part of the double cantilever beam specimen 

The following geometric parameters are used in the analysis: 

a = cii -f-a2=230mra, 2/? = 25.4mm, 2h = 3mm (17) 

Elastic properties of AS4/3501-6 carbon/epoxy composite used in the analysis are taken as (8); the 

following value of critical strain energy release rate is used: 

GIc =200 J/m2 (18) 

Third degree Bernstein basis function were used for the displacement approximation in all 

three coordinate directions. Ten bricks in the x-direction (L = 10), one brick in the y-direction 

(Af = 1), and four bricks in the z-direction (N = 4) were used in the simulation. Brick mesh is 

refined in the vicinity of the crack. The farther away from the crack, the coarser brick mesh 

becomes, as illustrated in Fig. 3.23. The parameters of the nonuniform brick mesh are as 

following: 

g1=*/~*/-i=4 for / = 2,3,4,5; g2 = X/+2 ~*/+1 =4 for / = 6,7,8,9; 
*/+l ~ xl 

^zn+2   zn+l=5 for /z = 1?2?3 

xl+l~xl 

(19) 
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Fig. 3.23: Schematic of the brick mesh pattern. 

The distribution of the strain energy density over the beam volume is shown in Fig. 3,24. 

Strain energy density of the slh brick is evaluated as 

/>w=- 
r(s) 

M 

(20) 

where VK } is the volume of the s brick. It is seen that strain energy is highly concentrated near 

the crack tip. Specifically, referring to Figs, 3,23 and 3.24, the strain energy density in the region 

0 < x < x4 (occupied by the bricks 1-3, 11-43, and 31-33) is negligibly small On the other hand, 

according to (17) and (19), this region covers 98,5% of the specimen volume located to the left 

from the crack (bricks 1-5, 11-15, and 31-35). The strain energy localization is, obviously, the 

result of the stress concentration in that region. 

The dependencies of the strain energy release rate (SERR) on the applied peel displacement 

u0 are shown in Fig. 3.25 for different lengths of the crack. A virtual crack extension length 

Aa == 0.5mm was used for the evaluation of SERR. Actually, just one simulation is needed for a 

full characterization of the SERR relation to the applied displacement. For example, assume that the 

SERR value G' has been obtained at some magnitude u'0 of the applied peel displacement. Then, 

SERR at an arbitrary value u0 is calculated as 
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Figure 3.24. Distribution of the strain energy density inside the specimen. Crack size 
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Figure 3.25. Variation of the strain energy release rate on the applied peel displacement uQ 

at different crack sizes. 
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G = {u0/u'0f-G' (21) 
Eq. (21) is the consequence of a quadratic form of the strain energy relation to the displacement 

approximation coefficients U^s\ see Section 1, Eq. (12), and a linear form of the relations 

between U$s* and the applied displacement u0. 

The crack propagation process can be described using results presented in Fig. 3.25. For 

the specimen with initial crack length a2 = 5mm, the increase of the applied peel displacement, w0, 

results in a monotonous increase of the SERR. At u0 ~ 0.066mm, the SERR reaches the assumed 

critical value (18), and the crack starts to grow, releasing the accumulated strain energy. The 

growth continues until the crack reaches its new "stable" state corresponding to the length 

a2=l0mm.   At the  applied  displacement magnitude   u0 ~ 0.066mm,   the   value   of  SERR 

corresponding to a new stable state drops to the level G7 ~ 30Jim . Further increase of the 

applied displacement leads to the increase of the SERR; this remains "safe" up to the peel 

displacement magnitude u0 ~ 0.175mm, when the SERR reaches its critical value (18) again, and 

the crack gains another increment. The accumulated strain energy is then released, the SERR drops 

to the level Gj ~ 50Jim , and the process repeats, but at the higher level of the applied peel 

displacement. 

The described discrete crack growth process which assumes some set of stable crack 

lengths is, of course, simplified and was presented here only for the sake of illustration how the 

Mosaic Model can be applied to the delamination growth problem. In a more rigorous analysis, 

which is the objective of our future work, each next stable crack length should be not assumed, but 

rather computed from the analysis itself. 

To further illustrate results of the present analysis, Figs. 3.26 and 3.27 show variations of 

the crack length and strain energy density of the entire specimen upon the applied peel 

displacement. The strain energy density of the entire specimen volume is defined as 

/> = 5>(,) (22) 
S 
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where p^ is the strain energy density of the sth brick calculated from (3.20). It can be observed 

from Figs. 3.26 and 3.27 that the length of the initial crack remains unchanged till the applied peel 

displacement reaches its critical level ucr. Below that level, the strain energy density of the 

specimen continuously increases. Further increase of the peel displacement above the level ucr 

causes crack growth which is accompanied by the release of the accumulated strain energy and, 

accordingly, by the reduction of the total strain energy of the specimen. 

It has to be noted that the difference between the applied peel displacement uQ and the 

computed crack opening deflection S at the end x = ax + a2 is very small. Indeed, uQ is about 6% 

higher than 8 at the crack length a2 = 5mm, and the difference is less than 0.06% at the crack 

length a2 = 20mm. 

In the example considered here the boundary value problem was formulated in terms of 

applied peel displacement. However, it is possible to formulate the reciprocal problem assuming 

that the peel force is applied to the double-cantilever specimen. An equivalency between the applied 

peel displacement u0 and peel force FQ can be established by comparing results of the numerical 

analyses. 

Figure 3.28 shows variation of the crack opening deflection S on the statically equivalent 

peel force. It is seen that the peel force increases till the delamination crack starts propagating. After 

that the peel force descends. It is also observed that as the initial crack length a2 increases, the peel 

force required to increase the crack decreases. These analytical results are in a qualitative agreement 

with the experimental observations reported in [15] - [17]. Shape of the curve "crack length vs. 

applied displacement" shown in Fig. 3.26 is similar to those presented in [17]. 

The considered rather simple example shows capability of the developed Mosaic Model approach 

to predict propagation of initial cracks between the bricks in a 3-D composite body. The 

methodology is readily applicable to adhesive bonded joints of composite structural elements. A 

study of some example problems of this type is underway. 
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Figure 3.26. Dependence of the actual crack length on the applied peel displacement u0 

for different initial crack lengths a2. 
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Figure 3.27. Dependence of the strain energy density on the applied peel displacement w0 

for different initial crack lengths a2. 
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4.0 3-D FINITE ELEMENT ANALYSIS OF COMPOSITE-TO-METAL AND 
COMPOSITE-TO-COMPOSITE BONDED JOINTS 

4.1 Introduction 

Application of three-dimensional solid finite elements gains increasing interest in numerical 

analysis of composite structures. During the 1960s and early 1970s, the development of 3-D 

solid elements was one of the major points of interest in the finite element methodology. A 

variety of 3-D elements have been derived on the basis of previously developed 2-D elements. 

Among the most popular types of solid elements is the family of rectangular hexahedra: 8-node 

(linear displacement) element with 24 degrees of freedom (d.o.f.); 20-node (quadratic 

displacement) "serendipity" element with 60 d.o.f; 27-node "full Lagrange" type (quadratic 

displacement) element with 81 d.o.f.; 32-node (incomplete cubic displacement) element with 96 

d.o.f; 64-node (complete cubic displacement) element with 192 d.o.f; 8-node (incomplete 

quintic displacement) element with 96 d.o.f; "Hermite" type element with both displacements 

and displacement derivatives as d.o.f, etc. 

Several types of 3-D numerical analyses have been applied to bonded joints in [l]-[4]. The 

finite difference analysis of double-lap joints presented in [1] have addressed specifics of the 3-D 

stress variations, double-edge effect at the corner points and inability of capturing it by a 2-D 

plane strain analysis, the effect of adhesive layer treated as distinct 3-D entity, and discussion on 

the failure criteria and fracture mechanics applicability. However, not all of the suggestions and 

conclusions (specifically, those regarding stress singularities) have not been validated due to the 

difficulties to satisfy some boundary conditions and absence of a convergence study. An 8-node 

hexahedron finite element developed in [2] for bonded joint analysis contains substantial 

simplifications, which deprive many features of the full 3-D analysis. A 3-D finite element 

analysis of single-lap joints was reported in [3]. A 3-D finite element analysis using 

submodeling technique has been applied in [4J.    This chapter presents a comprehensive 
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numerical study of composite-to-metal and composite-to-composite double-lap joints originated 

in the latter work. 

The library of 3-D solid elements in ABAQUS contains first- and second-order isoparametric 

elements [5]. The first-order (linear displacement) element is the 8-node hexahedron. The 

second order (quadratic displacement) elements are: the 20-node "serendipity" hexahedron and 

the 27-node "full Lagrange" hexahedron. In the latter element, the full Lagrange interpolation 

employs product forms of the one-dimensional Lagrange polynomials. Our experience of 

utilizing all three aforementioned elements showed that the 27-node element is most accurate and 

computationally efficient. This element (C3D27 by the ABAQUS convention) will be further 

utilized in this study. 

The major difficulty faced when performing 3-D analysis of bonded joints is that there are 

several zones of high stress gradients, and also several lines of possible singularities. Obviously, 

an accurate stress characterization near the lines of singularity with the use of uniform element 

mesh would require extremely high refinement and, accordingly, huge computational expenses. 

On the other side, when using nonuniform element meshes (for example, by applying 

"parametric refinement" available in ABAQUS), the element aspect ratio may become very high 

and thus cause so-called "zero or negative element volume error". Both these computational 

obstacles have been faced when directly using C3D27 element in the analysis of double-lap 

joints. Particularly, the attempts to accurately compute stresses in relatively thick adhesively 

bonded joints with thin adhesive layer (which was modeled as distinct 3-D elastic entity) 

revealed severe limitations. Accuracy of the computed stresses was questionable. Thus, a more 

sophisticated capabilities available in ABAQUS have to be explored. The global-local type 

"submodeling" technique available in the recent versions of ABAQUS showed to be a viable 

approach. 
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4.2    The Concept of Submodeling 

The idea how to apply submodeling technique to the bonded joint problems can be basically 

explained using specific example shown in Fig. 4-la. Only those regions of the structure have to 

be analyzed in great detail (i.e., using fine element meshes), which are close to the corner lines 

AB and CD. Accordingly, the stress fields can be defined in several steps, by successively 

performing 3-D analysis for smaller and smaller local regions. When using this multi-step 

approach, the computed nodal displacements from some "predecessor" local analysis are used as 

the input geometric boundary conditions for the "successor" local analysis. If this methodology 

is implemented correctly, then each next step should provide increasingly accurate stresses in the 

zones of high stress gradients. Ultimately, if it is known that the stresses are finite everywhere in 

the structure, their values can be computed with any prescribed accuracy after some number of 

submodeling steps. In principle, the number of consecutive local analyses is limited only by 

patience of the analyst and physical time allocated for the specific problem. An experienced 

analyst can easily optimize the submodeling strategy. 

(fa) 
ABCD-Overlap Zone 

Fig. 4-1: Schematic of a double-lap joint (a) and its 1/8* part (b) considered in the analysis. 
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Another important feature of this methodology (which is, indeed, a common place for any 

global-local type analysis) is that after the first step (i.e., global analysis) has been accomplished, 

different local regions of the structure are "disconnected" and each of them is further analyzed 

independently. This is illustrated in Fig. 4-2, where the side view, x-z, and top view, x-y9 of the 

structure are shown. In the local analyses, regions 1 and 2 are solved independently, and the 

number of d.o.f. used for the analysis of each local region may be even lower than in the initial 

global analysis. In the other words, instead of performing stress analysis of the whole structure 

in one step, the analysis of its small portions is performed in several independent steps. 

After these general remarks we will perform first four steps of the submodeling analysis, i.e., 

the initial (global) analysis and three consecutive local analyses. The focus will be at the stress 

convergence study near the ends and exactly at the ends of the overlap zone.    After that, 

(a) 

a1 a2 a3 
~""                      «— -mir  «$s>* 

i i 

cr/ip 2 1 AS b 

 ►x 

xaxbxc     xdxexf 

Bilk 

(b) 

Gr/ep 

o 

Z *H3 
10- 

b        xd      xf 

Al 

h2J 

J 
, 

Fig. 4-2: Schematic of the local region locations. 
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submodeling technique will be illustrated on the example of double-lap joint with initial debond 

crack. 

4.3    Problem Formulation 

Consider double-lap bonded joint shown in Fig. 4-la. The structure is exposed to uniform 

uniaxial extension. The displacement ux having some known value u0 is applied uniformly at 

the right and left ends of the middle adherends. 

It is expected in the problem under consideration that some stress components may be 

singular at the lines AB and CD (see, Fig. 4-la) which belong to the interface between the upper 

and middle adherends and the line DA which belongs simultaneously to the interface and free 

edge. It is important to emphasize that the cause of possible singularities at the lines AB and CD 

is different than at the line DA. Stress singularity at the line DA may be caused by the material 

property mismatch at the flat edge (similar to the classical free edge effect problem), while stress 

singularities at the lines AB and CD may be caused by both the material property mismatch and 

the step-wise geometry variation. 

Further, it is assumed for simplicity that both the upper and lower adherends are made from 

the same material and have identical geometric characteristics. Also, it is assumed that both the 

right and left middle adherends are made from the same material, have identical geometric 

parameters and placed symmetrically with respect to the plane which is perpendicular to the x- 

axis and passes through the center points of the upper and lower adherends. These assumptions 

allow one to apply symmetry conditions in all three coordinate directions and, accordingly, 

reduce the structure to be analyzed to l/8th part of the full structure, as shown in Fig. 4-lb. 

Accordingly, the full set of boundary conditions is formulated as following: 

wx = 0 atx=0;   ux=u0atx=a;   w^, =0 at >> = 0;   uz = 0atz=0 (1) 

The upper and lower adherends are made from unidirectional graphite/epoxy (Gr/Ep) 
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composite with the following elastic properties: 

EL=\64GPa (23.86A&/), ET = 9.82GPa (lA26Msi), 

GL = 6J8GPa (0.9825Afez),       GT = 3.66GPa (0.5306Msi), (2) 

vzr = 0.24 

Direction of the reinforcement in the composite adherends is along the x-axis. The middle 

adherends are made from aluminum (Al) with the following properties: 

E= 73JGPa (10.7Msi), v = 0.25 (3) 

Geometric parameters used in the analysis are: 

al a{ =ala2 = a/h-4, al\ = alh2 = alh3 =20 (4) 

It is further assumed that adhesive material provides perfect bonding, but due to a small 

thickness of adhesive layers those are not explicitly considered in this analysis. The effect of 

adhesive layers treated as distinct 3-D isotropic elastic solids will be studied in Sections 4.11 thru 

4.13. 

4o4    Global Analysis 

The initial step is to perform global analysis of l/8th part of the structure shown in Fig. 4-lb 

using successively refined meshes of elements in the x, y and z-directions. It is questioned in this 

study if it is possible to obtain converged displacements and stresses at any point of the 

structure? For brevity of the element mesh description, the following notations of the number of 

elements in the x-direction are introduced: 

NQG for 0 < xl a < xa la,  N*b for xa I a < x la < xb I a, Nbc for xb I a < x la < xc la, 

Ned for xcla<xl a<xdla,  Nje for xd la< xl a<xe I a, (5) 

N*f for xel a <xl a <Xf/ a,  N^ for xjl a< x I a <1 
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Number of elements in the ^-direction inside the interval 0 < ylb < 1 is denoted JVQI, and 

numbers of elements in the z-direction are denoted as 

Noi for 0<z/A<z///z,  N?x for Z/1 h< zl h< 1,  JV^ for 0 < zl h <zk I h, (6) 

NkI for zk/h<z/h<zl/h3 Nfm for ztl h<zl h<zmlh9 Nz
ml fox zmlh<zih<\ 

Specific values of xb , xe and z/ are prescribed by the particular structural configuration. 

Coordinates xa, xc, xd, Xf9 zk and zm will be later on used for determining boundaries of the 

local regions. Their choice is dictated by the analyst's intuition. On one side, it is desirable to 

take them as close as possible to the corner lines AB and CD, because solving smaller local 

regions will reduce number of required steps of submodeling and, therefore, reduce pre- 

processing and post-processing effort, as well as the computational time. On the other side, the 

coordinate values should be at some reasonable distance away from the corner lines AB and CD, 

because if the local regions are too small, the global analysis has to be huge as to provide 

converged displacements and stresses at the boundaries of the local regions. The following 

specific numerical values have been adopted in the analysis: 

xa/a=02l, xb/a = 0.25, xc/a=029, x^/a-0.46, xe/a=0.50, xf/a = 0.54,      (7) 

z^/A = 0.45 zz/A=0.5, zm/Ä=0.6 

Tables 4-1 thru 4-3 present full description of the element meshes used in the global analysis. 

For all variants described in Table 4-1, uniform meshes were applied inside each of the intervals 

in the x-direction. The nonuniform meshes were applied in the y and z-directions (parametric 

mesh refinement was used for this purpose). The element next to the mid-plane, y = 0, was 

always chosen the largest of all elements in the y-direction. The element next to the free edge, 

y-b, was always chosen the smallest of all elements in the y-direction. The lengths ratio of the 

largest to smallest elements in this direction was taken 40. In the z-direction, the largest element 
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in Al adherend is next to the mid-plane, z= 0, and the smallest element is next to the interface, 

z- 0.5h. Their lengths ratio in this direction was taken 8. Analogously, the largest element in 

the Gr/Ep adherend is next to the top surface, z- A, and the smallest element is next to the 

interface, z=\. Their lengths ratio in the z-direction is taken 8. For all variants described in 

Table 4-2, uniform meshes were used inside each interval in the x and j-directions; parametric 

mesh with the element ratio 8 was used in the z-direction. For all variants of Table 4-3, uniform 

meshes were applied in all of the intervals and for all of the coordinate directions. 

Table 4-1: Element meshes used in the global analysis for the x-direction convergence study. 

No. of mesh Ka Kb Kc Kd Ke Ki K K *n Total d.o.f. 

G.l 2 2 2 4 2 2 2 4 4 4 11,691 

G.2 4 4 4 8 4 4 4 4 4 4 22,923 

G.3 4 8 8 8 8 8 4 4 4 4 34,155 

G.4 4 12 12 8 12 12 4 4 4 4 45,387 

G.5 4 16 16 8 16 16 4 4 4 4 56,619 

G.6 4 20 20 8 20 20 4 4 4 4 67,851 

Table 4-2: Element meshes used in the global analysis for the y-direction convergence study. 

No. of mesh Ka Kb Kc Kd Ke ef Ki K *o/ tfn Total d.o.f. 

G.7 4 8 8 8 8 8 4 5 2 2 41,745 

G.8 4 8 8 8 8 8 4 10 2 2 79,695 
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Table 4-3: Element meshes used in the global analysis for the z-direction convergence study. 

No, of 
mesh XL Kb K Kd NXde 1 ef Nfl K NZ

0k Nu ^V/m ^i 
Total d.o.f. 

G.9 4 8 8 8 8 8 4 5 2 2 '2 2 41,745 

G.10 4 8 8 8 8 8 4 5 3 3 3 61,017 

G.ll 4 8 8 8 8 8 4 5 4 4 4 4 80,289 

As was pointed out above, major objective of the global analysis is to obtain converged 

displacements ux(x,y9z), uy(x,y9z) and uz(x9y9z) at all points of the structure. As expected, it 

should be most difficult to accomplish this task for the corner lines AB and CD. The performed 

convergence study performed for all three displacements is illustrated in Table 4-4 for one point 

of the line AB. If applying the simplest convergence criterion, namely, a monotonous decrease 

of the error factor with the mesh refinement, it can be concluded that convergence of ux and u 

is very fast and can be achieved with a rather coarse element mesh, but obtaining converged uz 

requires much finer element meshes. This effect is, probably, related to the specific deformation 

pattern of the double-lap joints. 

4.5    Local Analysis - Submodel 1 

In the next step, local regions 1 and 2 shown in Fig. 4-2, which are especially interesting due 

to the expected high stress gradients there and possible singularities at the lines AB and CD, are 

solved separately using nodal displacement values calculated in the global analysis as the input 

data. The same 27-node element is used in all local analyses and for both local regions. In 

principle, any number of successive submodeling steps can be applied, using converged 

displacements computed in some preceding step for more accurate stress computation in the 

successive step. This should consistently increase accuracy of the stress predictions inside the 

local regions 1 and 2. 
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Table 4-4: Normalized displacements at, x = 0.5a, y = 0.8Z?5 z = 0.5A computed with the element 
meshes described in Tables 4-1 thru 4-3. 

Displacement ux/uQ uy/u0 uz/u0 

G.l 0.34079 -0.05446 0.00180 

G.2 0.34100 -0.05445 0.00264 

G.3 0.34107 -0.05447 0.00306 

G.4 0.34110 -0.05447 0.00319 

G.5 0.34111 -0.05448 0.00325 

G.6 0.34112 -0.05448 0.00328 

G.7 0.34108 -0.05445 0.00317 

G.8 0.34102 -0.05446 0.00308 

G.9 0.34069 -0.05444 0.00298 

G.10 0.34111 -0.05445 0.00319 

G.ll 0.34135 -0.05446 0.00328 

First, consider local region 1, which length is defined by xc}/a = 0A6 and Xf/a=0.54. 

Element meshes used in the first local analysis are described in Table 4-5. The x-direction 

meshes are nonuniform (parametric) with the ratio of the largest to smallest elements 

lx = £™ax / £™in = 20. The largest elements are next to the vertical planes passing through xj 

and xy, and the smallest elements are on both sides of the vertical plane passing through xe. All 

meshes in they and z-directions are uniform inside each of the intervals, i.e., ly = L^ax / L™m = 1 

i  T rmax / rmin      -, and lz=Lz    ILz    =1. 
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Table 4-5: Element meshes used in the Submodel 1 analyses; lx = 20, lv — 1, lz = 1 

No. of mesh 
*& ^1 Nz0k tftf NL ^l 

Total d.o.f. 

Ll.l 8 8 5 4 4 4 4 27,489 

L1.2 10 10 5 4 4 4 4 34,089 

L1.3 4 4 10 4 4 4 4 27,279 

L1.4 6 6 10 4 4 4 4 39,879 

L1.5 8 8 10 4 4 4 4 52,479 

L1.6 10 10 10 4 4 4 4 65,079 

L1.7 12 12 10 4 4 4 4 77,679 

L1.8 8 8 10 4 8 8 4 77,679 

Results for all three displacements calculated at y = Q.8b and y = b with the meshes Ll.l- 

L1.8 of Table 4-5 are presented in Tables 4-6 and 4-7. When comparing variant Ll.l with L1.2- 

L1.7, which have different number of elements in the x-direction, it is seen that the displacement 

values practically do not change if the number of elements is more than Nje = N*f - 6 . When 

comparing results obtained for variants Ll.l and LI.5 or results obtained for variants LI.2 and 

LI.6 (these correspond to different number of elements in the j/-direction), it is seen that the 

effect of mesh refinement is more substantial, especially at the point y-b. The effect of z- 

direction mesh refinement is also considerable, especially for u , as seen from the comparison of 

L1.5andL1.8. 

Further, when comparing results presented in Table 4-6 for variants LL3-LL8 with the data 

obtained in the most refined global analysis (see Table 4-4), it is recognized that the local mesh 

refinements  do  not affect  ux   and  uy,  whilei/z   is  changing considerably.     So,  for this 

displacement component the element mesh near the line x= 0.5a , z= 0.5/z should be very fine. 
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The slowest convergence is at the point x= 0.5a, y = b3 z- 0.5A, as indicated by Table 4-7, 

Next consider results for the normalized stress components crx/<70, crz/a0 and Txz/cr0. 

The normalization factor <J0 = 0.96lGPa (0.1393Msi) is the nominal longitudinal stress 

calculated at x=ß from Hooke's law, assuming that the longitudinal strain s0 =1% atx = a; 

this corresponds to n0 = 0.01a . Explanation to our choice to focus on stress components a x, cr7 

and TXZ in this study is that ox is the major in-plane stress in the loading case under 

consideration, and az and r xz are traditionally considered as the most dangerous stresses for 

bonded joints. Numerical results obtained with the meshes L1.3-L1.7 of Table 4-5 are presented 

in Tables 4-8 and 4-9. Again, if applying the convergence criterion of a monotonous decrease of 

the error factor, it can be concluded that for both values of the ^-coordinate, in both the materials, 

all three stress components under consideration show very slow convergence. Additional 

validation of this conclusion can be obtained using parametric mesh refinement in the x- 

direction. 

Table 4-6: Normalized displacements at x = 0.5a, j/ = 0.8Z?5 z = Q.5h computed with the element 
meshes of Table 4-5. 

Displacement 
x    0 uy/uQ uz 1 u0 

Ll.l 0.34140 -0.05446 0.00363 

L1.2 0.34140 -0.05446 0.00363 

LI.3 0.34140 -0.05446 0.00363 

L1.4 0.34134 -0.05446 0.00353 

L1.5 0.34134 -0.05446 0.00354 

L1.6 034134 -0.05446 0.00355 

L1.7 0.34134 -0.05446 0.00355 

L1.8 0.34175 -0.05446 0.00382 
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Table 4-7: Normalized displacements at x = Q.5a , y = b, z = 0.5/z computed with the element 
meshes of Table 4-5. 

Displacement ux/u0 uy/u0 uz/u0 

Ll.l 0.35126 -0.07507 0.00522 

L1.2 0.35126 -0.07507 0.00523 

L1.3 0.35126 -0.07506 0.00522 

L1.4 0.35145 -0.07627 0.00573 

L1.5 0.35145 -0.07627 0.00573 

L1.6 035145 -0.07627 0.00574 

L1.7 0.35145 -0.07627 0.00574 

L1.8 0.35183 -0.07633 0.00600 

Table 4-8. Normalized stresses in Al and Gr/Ep adherends at x = 0.5a5 y = 0.8Z?5 z = 0.5/z 
computed with the element meshes of Table 4-5. 

Adherend Al Gr/Ep 

Stress «V^O °z'°0 Txz'°0 °"x/o"0 ^z^Q Txz^Q 

L1.3 3.8853 1.7952 -1.4412 4.2574 2.2144 -1.2825 

L1.4 3.9532 1.8532 -1.5292 4.2060 2.2305 -1.2965 

L1.5 3.9825 1.8779 -1.5892 4.1732 2.2350 -1.3052 

L1.6 3.9959 1.8894 -1.6312 4.1519 2.2365 -1.3112 

L1.7 4.0050 1.8961 -1.6637 4.1371 2.2365 -1.3158 
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Table 4-9: Normalized stresses in Al and Gr/Ep adherends at x = 0.5a, y = b,z = 0.5A computed 
with the element meshes of Table 4-5. 

Adherend Al Gr/Ep 

Stress crx/a0 ö"z/ö"0 Txz/a'o °"JC
/O

"0 crz/a0 Txz/(J0 

L1.3 3.5386 1.6561 -1.3270 3.9617 2.0263 -1.1943 

L1.4 3.6008 1.7096 -1.4071 3.9139 2.0412 -1.2072 

L1.5 3.6276 1.7325 -1.4619 3.8834 2.0454 -1.2151 

L1.6 3.6399 1.7431 -1.5003 3.8637 2.0468 -1.2205 

L1.7 3.6482 1.7493 -1.5299 3.8499 2.0474 -1.2248 

Next consider results obtained with different meshes in the j-direction. Most interesting here 

is to study stresses at the point x = 0.5a, y = b9 z= 0.5/z, which belongs simultaneously to the 

interface and free edge. In order to develop efficient computational strategies, the interval 

0 <ylb < 1 was first divided into two subintervals. Accordingly, the following notations of the 

number of elements have been introduced: N$g for 0 <yl b< 0.8 and Ny
gl for 0.8<y/b<l. 

Uniform meshes inside each of these intervals were applied in the first step; the number of 

elements used is given in Table 4-10. All mesh parameters in the x and z-directions were taken 

the same as in variant LI.5 of Table 4-5. In the next step, uniform meshes were used for the 

interval 0<_y/ö<0.8 and parametric meshes for the interval 0.S<y/b<l. The mesh 

parameters for this case are given in Table 4-11. Results for the stresses calculated with the 

element meshes of Tables 4-10 and 4-11 are presented in Tables 4-12 thru 4-15. It can be 

concluded from these data that even at the point x=0.5a, y = b, z=Q.5h all three stress 

components seem to be converging with the mesh refinement in the ^-direction. 
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Table 4-10: Uniform meshes in the j-direction used in Submodel 1 analysis; lx = 20, lz = 1 

No. of mesh K JVJ Total d.o.f. 

L1.5 8 2 52,479 

L1.9 4 1 27,489 

LI.10 4 2 32,487 

LI.11 4 4 42,483 

LI.12 4 6 52,479 

LI.13 4 8 62,475 

fable 4-11: Parametric meshes in the ^-direction used in Submodel 1 analysis; lx = 20, 4=1 

No. of mesh 
<2 "i lyinQ.S<y/b<l 

LI.11 4 4 1 

LI.14 4 4 10 

LI.15 4 4 20 

LI.16 4 4 40 

LI.17 4 4 80 

LI.18 4 4 160 
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Table 4-12:   Normalized stresses in Al and Gr/Ep adherends at x = 0.5a, y = b,z = 0.5h 
computed with the element meshes of Table 4-10. 

Adherend Al Gr/Ep 

Stress 
°"jc/cr0 &z/cr0 Txz/(JQ ^x/cT0 (Jz/(70 Txz/cr0 

L1.5 3.6276 1.7325 -1.4619 3.8834 2.0454 -1.2151 

L1.9 3.7244 1.7672 -1.4920 3.9515 2.0915 -1.2358 

LI.10 3.6277 1.7325 -1.4619 3.8835 2.0454 -1.2151 

LI.11 3.5152 1.7037 -1.4380 3.8081 2.0097 -1.1954 

LI.12 3.4414 1.6918 -1.4303 3.7594 1.9962 -1.1854 

LI.13 3.3841 1.6853 -1.4285 3.7210 1.9893 -1.1791 

Table 4-13;   Normalized stresses in Al and Gr/Ep adherends at x = 0.5a, y = 0.86, z = 0.5/z 
computed with the element meshes of Table 4-10. 

Adherend Al Gr/Ep 

Stress crx/(j0 <7z/<?0 Txz^0 CTX/(J0 ^z/^0 Txz/°'0 

L1.5 3.9825 1.8779 -1.5892 4.1732 2.2350 -1.3052 

L1.9 3.9669 1.8717 -1.5820 4.1520 2.2265 -1.3005 

LI.10 3.9833 1.8780 -1.5892 4.1739 2.2352 -1.3052 

LI.11 3.9920 1.8787 -1.5897 4.1790 2.2360 -1.3056 

LI.12 3.9920 1.8786 -1.5897 4.1790 2.2360 -1.3056 

LI.13 3.9920 1.8785 -1.5897 4.1790 2.2360 -1.3056 
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Table 4-14:   Normalized stresses in Al and Gr/Ep adherends at x = 0.5a5 y = b,z^ 0.5/z computed 
with the element meshes of Table 4-11. 

Adherend Al Gr/Ep 

Stress axl(J0 o"z/o"0 Txz/cr0 °*jc/cr0 O"z/o"0 Txz/cr0 

LI.11 3.5152 1.7037 -1.4388 3.8081 2.0097 -1.1954 

LI.14 3.2098 1.6709 -1.4384 3.5948 1.9763 -1.1655 

LI.15 3.0852 1.6560 -1.4500 3.4945 1.9687 -1.1594 

LI.16 2.9824 1.6317 -1.4572 3.4096 1.9629 -1.1561 

LI.17 2.9317 1.6141 -1.4593 3.3647 1.9603 -1.1554 

LI.18 2.9249 1.6091 -1.4599 3.3535 1.9614 -1.1564 

Table 4-15:   Normalized stresses in Al and Gr/Ep adherends at x = 0.5a, y — 0.86, z = 0.5A 
computed with the element meshes of Table 4-11. 

Adherend Al Gr/Ep 

Stress crx/(J0 o-z/cr0 Txz/cr0 <?x/cr0 ^z^O Txz/c70 

LI.11 3.9920 1.8787 -1.5897 4.1790 2.2360 -1.3056 

LI.14 3.9859 1.8790 -1.5895 4.1781 2.2359 -1.3054 

LI.15 3.9857 1.8790 -1.5893 4.1755 2.2358 -1.3053 

LI.16 3.9853 1.8789 -1.5891 4.1747 2.2356 -1.3051 

LI.17 3.9847 1.8788 -1.5887 4.1735 2.2352 -1.3049 

LI.18 3.9838 1.8785 -1.5883 4.1720 2.2347 -1.3045 
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4.6    Local Analysis - Submodel 2 

Next step is to study stress convergence with refining element mesh in the z-direction. For 

this purpose, another local region is introduced. This is confined between the planes z^/h^ 0.4 

and zm/h = 0.6 and has the same dimensions in the x and ^-directions as the local region 

considered in Submodel 1. The displacement values obtained from Submodel 1 analysis with 

element mesh LI. 17 have been used as the nodal displacement input in the Submodel 2 analysis. 

Number of elements in the z-direction is described in Tables 4-16 and 4-17. The other 

parameters for the meshes described in Table 16 are: N%e =8, N*f = 8, lx = 20 for both intervals 

0.46<x/a<0.5 and 0.5 < xl a <0.54 ; J\#g = 4, ^=1 for 0 < ylb< 0.8 ; Ny
gl=4, ly = 80 for 

0.S<y/b<l; lz = l for both intervals 0.4<z/A<0.5 and 0.5 <z/h < 0.6. The other 

parameters of the meshes described in Table 4-17 are: lz-2 or 4 for each of the intervals, 

0.4 < zl h < 0.5 and 0.5 <zlh< 0.6 (size of the elements decrease toward zl h = 0.5). All other 

parameters are the same as for the meshes of Table 4-16. 

Table 4-16: Uniform element meshes in the z-direction used in Submodel 2 analysis» 

No. of mesh Ki *bn 
Total d.o.f. 

L2.1 4 4 22,083 

L2.2 6 6 32,283 

L2.3 8 8 42,483 

L2.4 10 10 52,683 

Table 4-17:   Element meshes, nonuniform in the z-direction, used in Submodel 2 analysis. 

No. of mesh Ki *L h Total d.o.f 

L2.5 10 10 2 52,683 

L2.6 10 10 4 52,683 
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Numerical results for the stresses at two points on the line AB are presented in Tables 4-18 

and 4-19. In the case L2.6, violation of the allowable element aspect ratio has been indicated. 

However, even considering variants L2.1-L2.5 it is clear that the stresses do not converge at both 

points of the structure under consideration. Thus, mesh refinement in the z-direction indicates 

stress singularity at the corner line AB. 

Table 4-18:    Normalized stresses in Al and Gr/Ep adherends at x = 0.5a, y — 0.8&, z — 0.5/z, 
computed with the element meshes of Tables 4-16 and 4-17. 

Adherend Al Gr/Ep 

Stress °"x/ör0 ^z/ör0 Txz/(J0 crx/(70 c72/cr0 Txzl(J0 

L2.1 3.9847 1.8788 -1.5887 4.1735 2.2352 -1.3049 

L2.2 4.5425 2.1731 -1.7528 4.8838 2.6772 -1.5061 

L2.3 4.9397 2.3687 -1.8600 5.4712 3.0212 -1.6636 

L2.4 5.2337 2.5021 -1.9387 5.9740 3.2998 -1.7953 

L2.5 5.6650 2.6698 -2.0602 6.8812 3.7666 -2.0353 

L2.6 6.0350 2.7662 -2.1728 7.9627 4.2546 -2.3450 

Table 4-19:     Normalized stresses in Al and Gr/Ep adherends at, x = 0.5a, y — b,z=^ 0.5/z 
computed with the element meshes of Tables 4-16 and 4-17. 

Adherend Al Gr/Ep 

Stress axl<Jb <7z/(J0 Txz/cr0 Cx/(70 ^z^O Txz/cr0 

L2.1 2.9317 1.6141 -1.4593 3.3535 1.9614 -1.1564 

L2.2 3.3443 1.9078 -1.6398 3.8974 2.3755 -1.3130 

L2.3 3.6522 2.1184 -1.7543 4.3609 2.7049 -1.4336 

L2.4 3.8874 2.2720 -1.8329 4.7726 2.9756 -1.5326 

L2.5 4.2424 2.4822 -1.9371 5.5438 3.4378 -1.7123 

L2.6 4.5522 2.6178 -2.0013 6.4947 3.9354 -1.9467 
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Further numerical results correspond to the point which is slightly below the corner line AB 

(Table 4-20) and slightly above the corner line AB (Table 4-21). These results clearly show 

convergence of the stresses. Note that, ideally, the stresses <JX and T xz should be zero at 

x=0.5a5 z=0.6A. Numerical results of Table 4-21 show that these stresses are very small 

compared to the nominal value cr^ . Also, it is seen in Tables 4-20 and 4-21 that the magnitudes 

of <TZ/o°o at z= 0.4A and at z- 0.6A are very small compared to the magnitudes of <TZ/<T0 in a 

proximity of the corner line AB (compare with Table 4-19). 

Table 4-20:   Normalized stresses in Al adherend at, x = OJa, y- i,z = 0.4A computed with the 
element meshes of Table 4-16. 

Adherend Al 

Stress ^x/^0 ^z/^0 Txz^0 

L2.1 0.8753 0.3626 -0.1790 

L2.2 0.8808 0.3790 -0.1824 

L2.3 0.8824 0.3838 -0.1830 

L2.4 0.8835 0.3870 -0.1833 

Table 4-21:     Normalized stresses in Gr/Ep adherend at x = 0.5a , y = b, z = 0.6A computed with 
the element meshes of Table 4-16. 

Adherend Gr/Ep 

Stress <jx/ a0 a2/a0 Ixz / ^0 

L2.1 0.0008 0.0543 -0.0014 

L2.2 0.0009 0.0548 0.0040 

L2.3 0.0009 0.0549 0.0038 

L2.4 0.0009 0.0548 0.0036 
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Additional comparison between numerical results obtained in the global and local analyses is 

presented in Figs. 4-3 thru 4-5. The global analysis results correspond to the element mesh G.l 1 

of Table 4-3 and the Submodel 2 analysis results correspond to the element mesh L2.5 of Table 

4-17. The effect of using submodeling technique is similar for all three stress components and 

can be summarized as following: 

(i) stress values near the peaks are considerably higher in the case of Submodel 2 analysis 

than in the case of the global analysis (keep in mind that according to the above 

convergence study, the peak values tend to infinity with the mesh refinement); 

(ii) stress variations are smoother in the case of Submodel 2 analysis; 

(iii) Submodel 2 analysis provides practically zero values of az and T xz everywhere at the 

traction-free surface of the middle adherend, except a small region near the corner line 

xl a = 0.5, while the global analysis does not satisfy these boundary conditions with such 

a high accuracy; 

(iv) starting at some distance from the corner line xl a = 0.5 5 the results obtained from the 

global and local analyses become practically indistinguishable; 

(v) the global and local analyses provide practically identical results at the ends of the local 

region, xl a = 0.46 and xl a = 0.54. 

It is also seen that cz is tensile and its values near the corner line AB are higher than the 

nominal stress cr0 . Moreover, r xz also exceeds cr0 near the corner line. This confirms that 

these transverse stresses should be of a primary concern when predicting failure initiation in the 

joint. 
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4.7    Local Analysis - Submodel 3 

When considering results of the element mesh refinement in the x-direction (see Tables 4-8 

and 4-9), it is difficult to make certain conclusion about the stress convergence. A more detailed 

study is performed here in attempt to clarify this issue. Another local region is introduced, which 

has the same dimensions in the y and z-directions as the local region considered in Submodel 2, 

but of a smaller size in the x-direction. This newly introduced local region is confined between 

the planes xdla= 0.49 and xd/a=0.5l. The displacement values obtained from the Submodel 

2 analysis with element mesh L2.5 have been used as the boundary conditions in all variants of 

Submodel 3 analysis. The meshes are described in Table 4-22. In addition to those data, the 

following parameters were taken: N%e = 8, iVj-= 8 for both intervals 0.49 <xla< 0.5 and 

0.5<x/a<0.51;   i\#g = 4,   ly=l   for   0<y/b<0.8;   Ny
gl=43   7^=80   for   O.S<y/b<l; 

Nu = 10, Nfm = 10 and /z = 2 for both intervals 0.4 <z/h< 0.5 and 0.5 < zlh < 0.6.   In all 

cases, the smallest elements are next to the interface. 

Table 4-22: Element meshes, nonuniform in the x-direction5 used in Submodel 3 analysis. 

No. of mesh h Total d.o.f. 

L3.1 1 52,683 

L3.2 2 52,683 

L3.3 4 52,683 

L3.4 8 52,683 

L3.5 16 52,683 

Stress values obtained in Submodel 3 analysis are presented in Tables 4-23 and 4-24. These 

results are still not allowing to make any certain conclusion about stress convergence at the 

corner line AB for both the Al and Gr/Ep adherends. It seems that any further convergence study 
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using this methodology would be meaningless. Nevertheless, our major objective, to illustrate 

how the submodeling technique can be used for the stress convergence study, has been 

accomplished. 

Table 4-23:     Normalized stresses in Al and Gr/Ep adherends at, x = 0.5a, y = 0.86, z = 0.5A 
computed with the element meshes of Table 4-22. 

Adherend Al Gr/Ep 

Stress GXI G0 GJG0 \z 1 °0 tfx/^0 GZ/G0 Txz / a0 

L3.1 5.0191 2.2150 -1.7895 6.7997 3.4777 -2.0002 

L3.2 5.4725 2.5304 -1.9741 6.8812 3.6917 -2.0231 

L3.3 5.8826 2.8347 -2.1772 6.8501 3.8426 -2.0545 

L3.4 6.1870 3.0695 -2.4081 6.7449 3.9207 -2.0918 

L3.5 6.3340 3.1890 -2.6333 6.6255 3.9448 -2.1263 

Table 4-24:   Normalized stresses in Al and Gr/Ep adherends at, x = 0.5a, y = b,z= 0.5A 
computed with the element meshes of Table 4-22. 

Adherend Al Gr/Ep 

Stress Gx i G0 GZ/G0 1xz / G0 GJ GQ tfz/CTo T« / ao 

L3.1 3.8183 2.1409 -1.6540 5.5658 3.2021 -1.6628 

L3.2 4.1169 2.3785 -1.8469 5.5660 3.3761 -1.6946 

L3.3 4.3866 2.6041 -2.0578 5.5038 3.5013 -1.7390 

L3.4 4.5914 2.7786 -2.2915 5.4163 3.5682 -1.7911 

L3.5 4.6972 2.8729 -2.5123 5.3384 3.5907 -1.8372 

4.8    Local Stress Analysis In The Corner Region 2 

Next consider local stress analysis results obtained for the left corner region 2, which is 

confined between the planes xa la = 0.21 and xc/a= 0.29 (see Fig. 4-2).  The global analysis 
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results, which have been used as the displacement boundary conditions for this local analysis, 

were taken from variant G.l 1 of Table 4-3. The mesh used in the local analysis is the same as 

Ll.l (see Table 4-5) with Nx
de replaced by Nx

ah and Nx
f replaced by N%c . 

Stress variations in the interval 0.21 < xla < 0.29 at ylb = 1 and zlh =0.5 obtained from 

the global analysis and Submodel 1 local analysis are compared in Figs. 4-6 thru 4-8. The 

variations of <JX are very close, with slightly higher stress values near the peak shown by the 

local analysis. The variations of az are considerably smoother in the case of the local analysis. 

The most severe distinction is seen in Fig. 4-8b, where the global and local analyses predict very 

different behavior of r xz near the point xl a = 0.25. The global analysis predicts maximum of 

TX2 exactly at the corner point x/a = 0.25, while the local analysis predicts its maximum at 

some distance from the corner point, and descending stress approaching zero toward the corner 

point. The latter trend is consistent with the traction-free surface condition. However, at some 

rather small distance from the corner point, the variations obtained from the global and local 

analyses become practically indistinguishable for all three stress components. 

It is interesting to compare stress variations near the right corner point (see Figs. 4-3 thru 

4-5) and the left corner point (see Figs. 4-6 thru 4-8). As is seen from Figs. 4-3a and 4-6a5 erx in 

Gr/Ep adherend is tensile near both corner points, but its values near the right corner point are 

higher. Comparison of Figs. 4-3b and 4-6b shows that ax in Al adherend is tensile at both 

corner points, but its values are higher near the right corner point. When comparing <rzm Gr/Ep 

adherend (see Figs. 4-4a and 4-7a), it is seen that the stress is tensile near the right corner point 

and compressive near the left corner point. Analogous situation is observed in Al adherend (see 

Figs. 4-4b and 4-7b), where <JZ has high tensile values near the right corner point and much 

lower compressive values near the left corner point. The TXZ variations (see Figs. 4-5 and 4-8) 

are very distinct near the right and left corner points.   The values of this stress component are 
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much higher near the right corner point. The above results clearly indicate that the right corner 

line AB is the most probable site of initial failure. It can be expected (due to comparatively high 

peel stress and high transverse shear stress near this line) that debonding would be the likely 

mode of initial failure. 
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4.9    Stress Variations in the Width and Thickness Directions 

Illustration of the stress variations in the y and z-directions for the local region 1 is presented 

here. The results were obtained with Submodel 2 analysis, using element mesh L2.4 (see Table 

4-16). Total number of elements in the local region was taken 16, 8 and 20 in the x, y and z- 

directions, respectively. The nonuniform element meshes in the x and ^-directions described in 

Section 4.6 are applied; the z-direction mesh is taken uniform. 

Variations of <TX, CJ Z and r xz in the j-direction for half-width of the joint structure are 

shown in Fig. 4-9. The coordinate value y/b = l corresponds to the free edge. Results are 

presented for xl a- 0.5, zlh =0.5 (corner line AB). It is seen that for the main part (about 

90%) of the interval, all three stress components are practically constant, while near the free edge 

there is a considerable stress variation. It is interesting to note that the stresses descend towards 

the free edge. The results also indicate that <JZ and r xz computed from the sides of Al and Gr/Ep 
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adherends have considerable jumps at the interface along the whole width of the joint. Ideally, 

the stress values indicated by the square corresponding to the interface from the side of Al 

adherend and by the square corresponding to the interface from the side of Gr/Ep adherend 

should be equal. However, the transverse stress continuity is violated. Thus, the results show 

that it is not possible to achieve the required stress continuity even with very fine element 

meshes used for a very small local region. The revealed drawback seems to be intrinsic for the 

finite element analysis used here. 

Variations of <rx, a2 and TXZ in the z-direction for half-width of the joint structure are shown 

in Fig. 4-10. The coordinate value z/h =0.5 corresponds to the interface between Al and Gr/Ep 

materials. The results are shown for x/a = 0.5, y/b=l, i.e., the vertical corner line at the 

double-free edge. It is seen that <JX is practically zero along the major part of Gr/Ep adherend, 

and only near the interface the traction-free surface condition is violated. At the other end of the 
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interval, z= 0.4, <JX is indistinguishable from the nominal value a0 . Variations of <rz and rxz 

show that they reach maximums at the interface and that there are considerable jumps between 

the maximums. 

4.10 Stress Analysis in the Presence of Initial Debond Crack 

As indicated by the stress convergence study presented in the above sections, some stress 

components seem to be singular at the corner line AB. This means that if considering failure as 

the phenomenon occurring at some point of the structure (which is physically unreasonable but 

implied in the customary mathematical failure criteria), then initial failure must simultaneously 

occur at all points of the line AB under an infinitesimal load. In the case of double-lap bonded 

joint this means that initial failure in the form of debond cracks should be observed immediately 

after the load is applied. Thus, prediction of the failure initiation following a rigorous point-wise 

approach for this class of problems is an impossible task. The following two alternative 

approaches are visible to avoid this obstacle: (i) to compute average stresses along some finite 

width area near the line AB or (ii) to introduce some initial debond crack along the interface 

between Al and Gr/Ep adherends, which should start at the line AB and extend for some distance 

in the negative direction of the x-axis. The latter approach would allow to reformulate the 

boundary value problem and obtain solution in which singular stresses take place not at the end 

of the overlap zone but at the crack tip. 

An analysis with debond crack can be computationally performed using existing capabilities 

of 3-D ABAQUS elements: the debond crack of given length can be introduced by detaching 

certain nodes which belong to the interface. Consequently, a number of double nodes would be 

created, one of them belonging to the Gr/Ep adherend and the other one to Al adherend. If this is 

performed only for that part of the interface where az is tensile, then the adherends should 

separate along the whole area of detached nodes.   This means that the debond crack, which 
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zone of Debond Craclc 

zone of Perfect Bonding 

Figure 4-11: Initial debond crack at the end of the overlap zone, 

configuration is defined by the area of detached nodes9 will open under the applied in-plane load. 

Taking into consideration that the stresses are singular along the whole corner line AB, it is 

reasonable to detach the nodes along some area AA?B'B, as shown in Fig. 4-11.  Length of the 

initial debond crack, denoted Ax = xe ~xd , can be chosen arbitrarily. 

Two numerical examples are considered for illustration of the described approach. Those 

correspond to the cases of nodes detached along the area AA'B'B with xd la = 0.498 (further 

referred as Crack 1) and xd la =0.495 (Crack 2); recall that xe la = 0.5. The nodal 

displacements obtained from the Submodel 2 analysis without debond crack (corresponding to 

the element mesh L2.5 of Table 4-17) were used as boundary conditions for the Submodel 3 

analysis with debond crack. Two local analysis variants were performed for the above crack 

lengths; they are further referred as C.l and C.2. The respective element meshes are described in 

Table 4-25. The following mesh characteristics have been taken: lx = 5 has been applied for the 

intervals   0.49 < xla < 0.498   and  0.498 < x/a < 0.5   in the case C.l   and for the intervals 
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0.49 <xla< 0.495 and 0.495 < xla < 0.5 in the case C.2. In both cases, the highest mesh 

refinement was applied near the crack tip, xl a = 0.498 for C.l and xl a =0.495 for C.2. The 

uniform x-direction mesh was used for the interval 0.5<JC/<Z<0.51. Other mesh parameters are 

the same as in variant L2.5 of Table 4-17. Results obtained with Submodel 2 (using element 

mesh L2.5) without debond crack are used for a comparison. 

Table 4-25:     Element meshes used in Submodel 3 analyses with the debond cracks; other 
parameters explained in the text. 

No. of mesh xeJa A^ xy ee Total d.o.f. 

C.l 0.498 8 8 8 89,097 

C.2 0.495 8 8 8 89,097 

In order to provide better visual image of the deformed configuration of the bonded joint 

solved without and with initial debond crack, three magnified element meshes, distorted by the 

loading, are shown in Fig. 4-12 for the cross-section x-z, at y=0. The distorted mesh 

corresponding to the Submodel 2 region without crack is shown in Fig. 4-12a. The distorted 

meshes obtained with the cracks C.l and C.2, which were computed for the Submodel 3 region, 

are shown in Figs. 4-12b and 4-12c. The latter figures illustrate that the separation of the 

adherends in the zones of detached nodes have occurred. It is also observed in Figs. 4-12b and 

4-12c that major distortion of the displacement field is now at the crack tip. 

Variations of ax, az and r xz in the x-direction computed without crack, with Crack 1 and 

with Crack 2 are shown in Figs. 4-13 and 4-14. It is seen in Fig. 4-13 that variation of <JX in 

Gr/Ep adherend radically changes in the presence of debond crack. In addition to the tensile 

peak there is also a compressive peak. When the crack length increases, the compressive peak is 

growing, while tensile peak is descending. Note that crx is practically zero at the location 

xl a = 0.5 when using analysis with debond crack, while that was not achievable in the analysis 
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Fig. 4-12: The element mesh distortions in the x-plane without crack (a) and with initial 
debond crack of different length (b,c). 

without crack (compare with Fig. 4-3a).   Thus, ax at the right edge of the upper adherend is 

released in the presence of initial debond crack. 

When considering ax in Al adherend shown in Fig. 4-13b, it is seen that the stress is tensile 

along the whole interval. The stress peak (which is now reached at the crack tip) is considerably 

higher than in the joint without crack. Besides, the peak grows when increasing the initial crack 

length. 

Variations of &z in the x-direction are shown in Fig. 4-14. For both the Gr/Ep and Al 

adherends this stress component is tensile in all three cases.  Its peak monotonously descend in 
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Fig. 4-13: Variations ofaxJaQ in Gr/Ep (a) and Al (b) adherends aty/b = 1, zlh = 0.5 without 
crack and with initial debond crack of two different lengths. 

the upper adherend with increasing length of the crack. However, in the lower adherent the trend 

is quite different: there is some crack length which provides the highest peak. It is worth 

mentioning that for both the debond crack cases, <JZ in both the adherends is very small along 

the whole crack length, so the stress has been released from the end of the overlap zone. 

Variations of rxz in the x-direction are shown in Fig. 4-15.   In the upper adherend these 

variations are radically different for the cases with and without debond crack.   There are both 

positive and negative peaks, while only one peak with monotonous stress variation was obtained 
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crack and with initial debond crack of two different lengths 

in the analysis without debond crack. For the middle adherend, the highest peak is observed in 

the case of Crack 1, similarly to the trend for az (see, Fig. 4-14a). It is also seen that r xz values 

at the traction-free crack surface are very close to zero in the upper adherend and slightly deviate 

from zero in the middle adherend. 

Presented results reveal some basic features of the stress variations in perfectly bonded 

composite-to-metal joint having small initial debond crack. At least qualitatively, the results are 

reasonable and reflect the expected trend: high peaks of the transverse stresses are released from 

242 



-2 

-o— without crack 
-? — with crack 1 
•A-«- with crack 2 

■^rrr^g^-v»«- 

0.49     0.492    0.494    0. 
x/a 

0.498      0.5 

-4 
0.49 

■ without crack 
' — with crack 1 
"-• with crack 2 

J_ 

0.495 0.5 
x/a 

0.505 0.51 

Fig. 4-15: Variations of TJO0 in Gr/Ep (a) and Al (b) adherends aty/b = 1, z/h = 0.5 without 
crack and with initial debond crack of two different lengths. 

the end of the overlap zone and shifted to the debond crack tip. 

Now, the other boundary value problem emerges, namely, the problem of debond crack 

propagation. A number of analytical and numerical fracture mechanics approaches are known 

for analyzing crack growth conditions, however specifics of the stress fields in bonded joints, 

e.g., presence of at least three significant stress components (<JX,<JZ and rxz) which should 

contribute to the crack propagation process and, in addition to that, an extremely high 

nonuniformity of the stresses, would create definite challenges when developing a 3-D fracture 
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analysis of bonded joints. 

4,11 Analysis of Composite-to-Composite Adhesive Bonded Joint 

In the previous sections it was assumed that the structure shown in Fig. 4-1 is perfectly 

bonded, but adhesive layers have zero thickness and, therefore, those were not included in the 

analysis as physical entities. Here we will focus on the effect of a finite-thickness adhesive layer 

in the analogous double-lap joint problem. Schematic of a structural element under consideration 

is shown in Fig. 4-16a.  As before, the structure is exposed to uniform uniaxial extension.  The 

(b) adhesive layer ABCDA'B'C'D' 

Figure 4-16. Schematic of a composite-to-composite adhesive bonded joint (a) and its 1/8^ 
part (b) considered in the analysis. 
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displacement ux, having known value u0, is applied uniformly at the right and left ends of the 

middle adherends. All four adherends are made from the same material and have equal 

thickness. It is also assumed that both the right and left middle adherends are of equal length and 

placed symmetrically with respect to the plane perpendicular to the x-axis and passing through 

the center points of the upper and lower adherends. Further, it is assumed that all four adhesive 

layers have the same elastic properties and identical geometric parameters. The above 

assumptions are allowing to apply symmetry conditions in all three coordinate directions and, 

accordingly, reduce analysis to l/8th part of the full structure, as shown in Fig. 4-16b« Thus, the 

full set of geometric boundary conditions is exactly the same as in (4-1). 

All of the adherends are made from 16 layers of unidirectional graphite/epoxy Hercules 

AS4/3501-6 tape having the following elastic properties: 

EL^UlGPa (20.0A&/), ET =10.57GPa (1.54Afri), vLT = 030, (8) 

GL = 5A5GPa (0J50Msi)9 GT = 3A7GPa (0.506Msi) 

All layers are placed in the x-direction. The bonding adhesive is Cytec FM300-2K film with 

3% woven glass scrim considered as isotropic material with the following properties: 

E = 3A3GPa (0.50Mw), v = 0.30 (9) 

Geometric parameters used in the analysis are: 

a -45.72cm (18.0m), a{ = a3 = 2032cm (8.0m), a2 -5.08cm (2.0m), 6-1.27cm (0.5m), 

h = 0.3556cm (0.14m), \ =h3 = 0.2286cm (0.09m), h2 = 0.1143cm (0.045m),      (10) 

Afl = 0.0X21 cm (0.005m) 

It is seen from the above geometric characteristics that the aspect ratios are a I h =129 for the 

overall joint and a2l ha = 400 for the adhesive layers. Clearly, a direct 3-D stress analysis of the 
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structure with this kind of geometric configuration would be a serious challenge. 

Another important specific feature of the problem under consideration is that there are 

multiple sites of high stress gradients and also several lines of possible stress singularities. 

Specifically, the following lines marked in Fig. 4-16b are under suspicion: 

• corner line AB which belongs to the interface between adhesive layer and middle 

adherend; 

• corner line CD5  which belongs to the interface between upper adherend and 

adhesive; 

• lines BC9 CD and DA5 each of them belonging to the interface between the adhesive 

layer and middle adherend and, at the same time, to the free edge; 

• lines A'B5, B'C and D'A5, each of them belonging to the interface between the 

adhesive layer and upper adherend and, at the same time, to the free edge. 

Bach of these lines is a potential site of stress singularity. It should be pointed out that the 

nature of singularity at the lines AB and CD5 is different than at the other six lines. Stress 

singularity at AB and CD5 may be due to the material property mismatch together with the 

corner-wise geometry variation. Stress singularity at A'B', CD, A'D', AD, C'B', and CB may 

be only caused by the material property mismatch, similarly to the case of classical free edge 

effect. 

Due to the aforementioned very high aspect ratios and presence of several lines of possible 

singularities in the problem under consideration, an accurate stress computation by the direct use 

of 3-D finite elements seems hardly possible task. Indeed, if utilizing uniform element meshes, a 

huge number of elements will be required. On the other side, if using nonuniform element 

meshes, the element aspect ratio may become too high; this is indicated in ABAQUS as "zero or 
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negative element volume error" 

Both the uniform and nonuniform types of element meshes have been tried. The results 

undoubtedly showed that the aforementioned geometric parameters cause real computational 

problems when C3D27 solid element is directly applied for the stress analysis of adhesive 

bonded joints. The conclusion has been drawn that the best outcome one can expect from a 

global analysis is to accurately predict 3-D displacement fields. In order to obtain sufficiently 

accurate stresses, a global-local type analysis should be used. The submodeling technique 

described in Section 4.2 will be further explored in the next two sections on the example of 3-D 

stress analysis of thin composite-to-composite adhesive bonded joints. 

4.12 Global Analysis 

An initial step is to perform global analysis of l/8th of the structure which is shown in Fig. 4- 

16b, using successively refined meshes of elements. The objective here is to illustrate that the 

displacement convergence can be achieved at any point of the structure, but the same cannot be 

said regarding the stress convergence. The following notations of the number of elements in the 

x-direction are introduced (these are slightly modified compared to (5)): 

NQü for 0 < xl a < xa la,  N*b for xal a<xla<xbl a,  Nbc for xb I a < x la < xc la, 

N*d for xc/a<xla<xdla, Nde for xdla < xl a<xe la, N*f for xel a<xl a<xf I a,    (11) 

Nfg for Xfl a<xl' a<xgl a, Ng\ for xgl a< xl a < 1 

Number of elements in the ^-direction inside the interval 0 < ylb < 1 is denoted NQ{ , and 

numbers of elements in the z-direction are denoted as following: 

NQ; for0<z//z<zz//2?  Nfm for zi/h<z/h<zm,  N*nl for zmlh<zlh< 1 (12) 
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Specific values of xb, Xy, z} and zm are defined by the structural configuration.   These 

parameters are illustrated in Fig. 4-17. 

(a) 

ai a 2 a3 
""^                    ■■ ■            TP^* 

Y; 
Gr/Ep 2 II Gr/Ep         b 

a a* b^ c^ cT e* f* 9 

§m§itbk 
■spr 

i'  '  i Local regions 1 and 2 

(to) 
a of 

hj    Gr/Ep 

I——8^ Of 

llpl ih° 
4       A 

'c       e       g 

Adhesive material 

Fig. 4-17: Geometry of the global and local regions in thex-7 (a) andx-z (b) planes. 

According to (10), the following numerical values are adopted in the analysis: 

xb/a = 0A444, xfla = 0.5556, zl/h= 0.3214 9 zm/h=0357l (13) 

Coordinates xa, xc9 xe and xg correspond to the boundaries of local analysis regions.  The 

following specific numerical values are adopted in the analysis: 

xala = 0.4333 xc la -0.4556, x^/a = 0.5, xe la = 0.5444, xgla = 0.5667 (14) 

Table 4-26 provides description of the element meshes used in the five global analysis 

variants.  For all of the variants uniform meshes were applied inside each of the intervals in the 

x-direction.   The nonuniform meshes were applied in the y and z-directions (parametric mesh 

refinement was used for this purpose).   Elements nearest to the mid-plane, j> = 0, were always 
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chosen the largest in the j/-direction. The lengths ratio of the largest to smallest elements in this 

direction was taken 40. Elements in the middle adherend, nearest to the mid-plane, were chosen 

the largest, and elements nearest to the interface, zl I h- 0.3214, the smallest in the z-direction. 

The lengths ratio of the largest to smallest elements in this direction was taken 8. For the upper 

adherend, the largest elements in the z-direction were the nearest to the top surface, z/h=l, and 

the smallest were the nearest to the interface zml h= 0.3571. Their lengths ratio was taken 8. 

Table 4-26: Element meshes used in the global analysis. 

Mesh 
Noa Kb K Nc

Xd Ke Nx
f N% tfj Agi Kl ty« Kl d.o.£ 

GA.l 4 4 4 4 4 4 4 4 4 4 4 4 30,051 

GA.2 4 6 6 4 4 6 6 4 4 4 4 4 37,395 

GA.3 4 8 8 4 4 8 8 4 4 4 4 4 44,739 

GA.4 4 6 6 4 4 6 6 4 5 4 4 4 45,705 

GA.5 4 6 6 4 4 6 6 4 6 4 4 4 54,015 

The slowest displacement convergence is expected at the aforementioned lines of possible 

singularities. The performed convergence study of all three displacements with the mesh 

refinement in the x-direction is illustrated in Tables 4-27 thru 4-29 for the following three x- 

coordinate values: x = xe,x = Xf and x = xg and four z-coordinate values: z==0,z = z/3z = zm 

and z= h. 

Results of Table 4-27 show that the displacements have clearly converged at all four points 

under consideration. Same can be stated for the two points considered in Table 4-29. However, 

as follows from Table 4-28, there is a comparatively slow convergence of uz at the points A and 

A', each of them belonging to the double-free edge and one of the interfaces (see, Fig. 4-16b). 

Thus, in order to obtain accurate transverse displacement values at these points even finer 
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element mesh in the x-direction should be used. 

Table 4-27:   Normalized displacements at x = 0.5444a, y = b and four z-locations, computed with 
different x-direction element meshes of Table 4-26. 

Mesh ux / uQ Uy/UQ uz/uQ 

z/h = 0 

GA.l 0.0662 -0.8432 x 10"3 0 

GA.2 0.0662 -0.8438 x lO"3 0 

GA.3 0.0662 -0.8441 x 10"3 0 

z/A = 0.3214 

GA.l 0.0657 -0.8099 x 10"3 -0.2553 x 10"3 

GA.2 0.0657 -0.8105 xlO"3 -0.2555 xlO"3 

GA.3 0.0657 -0.8107 xlO"3 -0.2556 xlO"3 

z/h = 0.3571 

GAT 0.0653 -0.7978 x lO'3 -0.2927 x 10"3 

GA.2 0.0653 -0.7983 x lO'3 -0.2930 xlO'3 

GA.3 0.0653 -0.7985 x 10"3 -0.2931 x 10"3 

z/h=l 

GA.l 0.0640 -0.6703 x 10~3 -0.4330 xlO"3 

GA.2 0.0640 -0.6703 x 10"3 -0.4330 xlO"3 

GA.3 0.0640 -0.6703 x 10'3 -0.4330 xlO"3 
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Table 4-28:   Normalized displacements at x = 0.5556a, y = b and four z-locations, computed with 
different x-direction element meshes of Table 4-26. 

Mesh ux 1 llQ Uy 1   U0 uz 1 u0 

z/h = 0 

GA.l 0.0683 -0.1944 xlO"2 0 

GA.2 0.0683 -0.1942 xlO"2 0 

GA.3 0.0683 -0.1942 xlO"2 0 

zl h = 0.3214 

GA.l 0.0679 -0.1927 xlO"2 0.3584 x 10"3 

GA.2 0.0679 -0.1924 xlO"2 0.3693 x 10"3 

GA.3 0.0679 -0.1922 xlO"2 0.3743 x 10"3 

z/A = 0.3571 

GA.l 0.0665 -0.1748 xlO'2 0.7250 x 10'3 

GA.2 0.0665 -0.1737 xlO"2 0.7906 x 10-3 

GA.3 0.0665 -0.1731 xlO'2 0.8292 xlO"3 

z/h = \ 

GA.l 0.0642 -0.9020 xlO'3 0.6304 x lO"3 

GA.2 0.0642 -0.9020 x 10-3 0.6337 xlO'3 

GA.3 0.0642 -0.9020 xlO"3 0.6370 xlO'3 
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Table 4-29: Normalized displacements at, x = 0.5667a, y = & and two z-locations, computed with 
different x-direction element meshes of Table 4-26. 

Mesh ux/u0 Uy   /   UQ uz / ll0 

z/h^O 

GAT 0.0709 -0.2005 x 10"2 0 

GA.2 0.0709 -0.2004 xlO"2 0 

GA.3 0.0709 -0.2004 x 10"2 0 

z/A = 0.3214 

GAT 0.0709 -0.2005 x 10'2 -0.1861 xlO"3 

GA.2 0.0709 -0.2005 x lO'2 -0.1861 xlO'3 

GA.3 0.0709 -0.2005 x 10"2 -0.1861 xlO"3 

The displacement convergence study with mesh refinement in the ^-direction is illustrated in 

Tables 4-30 thru 4-32 considering the same ten points as in Tables 4-27 thru 4-29. Convergence 

of uy is clear for all of the points. Results of Table 4-31 show that again, the slowest 

convergence of uy and uz is obtained for the corner points A and A'. 
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Table 4-30: Normalized displacements at, x - 0.5444a, y = b and four z-locations, computed with 
different ^-direction element meshes of Table 4-26. 

Mesh ux / u0 Hy/llQ uz/uQ 

z/h = 0 

GA.2 0.0662 -0.8438 x 10'3 0 

GA.4 0.0662 -0.8430 xlO'3 0 

GA.5 0.0662 -0.8424 xlO"3 0 

z/h = 0.3214 

GA.2 0.0657 -0.8105 xiO'3 -0.2555 x 10'3 

GA.4 0.0657 -0.8089 x 10"3 -0.2568 x lO"3 

GA.5 0.0657 -0.8077 xlO"3 -0.2576 x 10"3 

z/ft = 0.3571 

GA.2 0.0653 -0.7983 x 10-3 -0.2930 x 10-3 

GA.4 0.0653 -0.7969 xlO'3 -0.2942 x 10-3 

GA.5 0.0653 -0.7958 x 10"3 -0.2948 x 10"3 

z/h=l 

GA.2 0.0640 -0.6703 x 10"3 -0.4330 xlO"3 

GA.4 0.0642 -0.6688 x 10"3 -0.4334 x IQ'3 

GA.5 0.0642 -0.6685 x 10"3 -0.4330 x 10"3 
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Table 4-31:   Normalized displacements at x = 0.5556a, y = b, and four ^-locations, computed 
with different ^-direction element meshes of Table 4-26. 

Mesh ux / u0 uy/uQ U2/UQ 

z/A = 0 

GA.2 0.0683 -0.1942 xlO"2 0 

GA.4 0.0683 -0.1949 xlO"2 0 

GA.5 0.0683 -0.1954 xlO"2 0 

z/h = 0.3214 

GA.2 0.0679 -0.1924 xlO'2 0.3693 x 10'3 

GA.4 0.0679 -0.1943 xlO"2 0.3670 x 10"3 

GA.5 0.0679 -0.1957 xlO'2 0.3659 x 10-3 

z/h = 0.3571 

GA.2 0.0665 -0.1737 xlO'2 0.7906 x 10'3 

GA.4 0.0665 -0.1755 xlO"2 0.7805 x 10"3 

GA.5 0.0665 -0.1768 xlO"2 0.7730 xlO'3 

z/h = l 

GA.2 0.0642 -0.9020 x 10-3 0.6337 x 10'3 

GA.4 0.0642 -0.8932 xlO'3 0.6283 x lO"3 

GA.5 0.0642 -0.8899 x 10'3 0.6282 x 10"3 
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Table 4-32:   Normalized displacements at x = 0.5667a, y — b and two z-locations, computed with 
different ^-direction element meshes of Table 4-26. 

Mesh ux / UQ Uy/U0 uz/u0 

z/h = Q 

GA.2 0.0709 -0.2004 x 10~2 0 

GA.4 0.0709 -0.2005 x 10"2 0 

GA.5 0.0709 -0.2005 x 10"2 0 

z/Ä = 0.3214 

GA.2 0.0709 -0.2005 x 10-2 -0.1861 xlO"3 

GA.4 0.0709 -0.2005 x 10-2 -0.1863 x 10"3 

GA.5 0.0709 -0.2005 x 10'2 -0.1864 xlO"3 

It is also important to assure that converged stresses can be obtained from global analysis at 

the boundaries of the local region. Illustrative results obtained with the global element meshes 

of Table 4-26 are presented in Tables 4-33 thru 4-36 for the following two points in the lower 

adherend, {x-xe, y=b, z^Zj) and {x-xaj y-b, z-zi), and one point in the adhesive, 

{x = xe, y-b, z = Zf} (see Fig. 4-17b for the notations). All stress magnitudes were normalized 

by the factor a0 - l.93GPa (O.lSMsi) which represents nominal longitudinal stress calculated 

at x = a from Hooke's law, assuming that the loaded end is free in the y and z-directions and that 

the applied longitudinal displacement is u0 = 0.01a (s0 =1%). 

It is seen from Table 4-33 that all three stresses at the selected points in the lower adherend 

practically do not change with the x-direction mesh refinement. Results of Table 4-34 indicate 

that all three stresses in the adhesive layer have converged at the selected point. Results 

presented in Tables 4-35 and 4-36 for the ^-direction mesh refinement indicate similar trend, e.g., 

that all three stresses have converged at the selected points for both the materials. These results 
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prove that it is correct to further perform local stress analysis for the region 1 (see Fig. 4-17), 

using output displacements computed with the mesh GA.35 for example, as the input data. 

Indeed, the displacements have been accurately calculated everywhere in the local region, and 

stresses have been calculated accurately at least at the exterior of the region, where the boundary 

conditions would be applied. So, the task of increasing stress computation accuracy inside the 

local region seems reasonable. 

Table 4-33:   Normalized stresses in the lower adherend at y — b, z = 0.3214A and two x-locations, 
computed with different x-direction element meshes of Table 4-26. 

Mesh Gx / G0 az / a0 \z 1 ^0 

x/a = 0.5444 

GA.I 0.5440 -0.0126 -0.0537 

GA.2 0.5446 -0.0126 -0.0538 

GA.3 0.5449 -0.0126 -0.0539 

x/a = 0.5667 

GAT 0.9884 -0.0001 -0.0004 

GA.2 0.9881 -0.0001 -0.0004 

GA.3 0.9879 -0.0001 -0.0004 

Table 4-34:   Normalized stresses in the adhesive layer at x I a = 0.5444, y = b,z = 0.3214/z, 
computed with different x-direction element meshes of Table 4-26. 

Mesh ax 1 G0 G2/ a0 \z 1 a0 

GAT 0.0091 -0.0125 -0.0533 

GA.2 0.0091 -0.0126 -0.0534 

GA.3 0.0091 -0.0126 -0.0535 
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Table 4-35:   Normalized stresses in the lower adherend at y — b, z = 0.3214/z and two x-locations? 

computed with different y-direction element meshes of Table 4-26. 

Mesh <jx 1 a0 ^2/a0 ^z/CTo 

x/a = 0.5444 

GA.2 0.5446 -0.0126 -0.0538 

GA.4 0.5469 -0.0124 -0.0539 

GA.5 0.5483 -0.0123 -0.0539 

x/a = 0.5667 

GA.2 0.9881 -0.0001 -0.0004 

GA.4 0.9883 -0.0001 -0.0004 

GA.5 0.9885 -0.0001 -0.0004 

Table 4-36.   Normalized stresses in the adhesive layer at x/a = 0.5444, y — b, z= 0.3214A 
computed with different^-direction element meshes of Table 4-26. 

Mesh ax/a0 <J2/O0 Ixz ! °"0 

GA.2 0.0091 -0.0126 -0.0534 

GA.4 0.0093 -0.0124 -0.0539 

GA.5 0.0094 -0.0123 -0.0539 

4.13 Numerical Comparison of the Global and Submodel Analyses 

In the next steps, local regions 1 and 2 shown in Fig. 4-17 can be solved separately using 

nodal displacement values calculated in global analysis as the input data. The same 27-node 

element is used for the local analysis. In principle, any number of successive submodeling steps 

can be applied, using converged displacements computed in some preceding step for more 

accurate stress computation in the successive step. This should consistently increase accuracy of 

the stress predictions in the local regions 1 and 2. 
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Consider local region 1 shown in Fig. 4-17 with the geometric parameters given in (14). As 

follows from the previous section, the global analysis provided converged displacements for all 

points of this region. The displacements computed with global mesh GA.3 have been used as 

input data in the local analysis. 

In the local analysis, the following numbers of elements were used: N^ = 16, Nfg =16, 

NQl = 4, NQJ = 4, Nfm = 4 and Nz
ml = 4. The x-direction mesh was taken nonuniform, with the 

ratio of the largest to smallest elements lx = l!™x / Ll
x
m = 20. The largest elements are those 

nearest to the vertical planes passing through coordinates xe and x , and the smallest elements 

are those nearest to the vertical plane passing through coordinate Xf. All meshes in the y and z- 

directions were taken uniform inside each of the intervals. 

Variations of the normalized stresses crx/cr0, az /cr0 and rxz/a0 in the x direction obtained 

from the global analysis and submodel analysis are shown in Figs. 4-18 thru 4-20 for the lower 

interface and in Figs. 4-21 thru 4-23 for the upper interface. 

As seen in Fig. 4-18a, in the adhesive the difference between results near the corner point is 

considerable: the submodel analysis provides smooth stress variation and much higher peak 

value. On the contrary, results for the adherend in Fig. 4-18b are very close. Note that at the 

right end ax in adherend tends to <r0, and at the left end it tends to <r0 / 2. It has to be pointed 

out that the region of high stress gradients is very small compared to the length of the overlap 

zone. 

Analogous trends are seen in Fig. 4-19 for crz/cr0: in the adhesive there is significant 

difference between the results, while in the adherend they are very close. It has only to be 

mentioned that, as seen in Fig. 4-19b, the submodel analysis allows to satisfy the free-surface 

boundary condition more accurately. 
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Fig. 4-18: Variations of ojo0 in the adhesive (a) and middle adherend (b) along the interface 
&ty/b=l,z/h = 0.3214. 

The ^XZ/O-Q variations in the adhesive shown in Fig. 4-20a are rather close; the minor 

difference is that near the corner point the submodel analysis provides smoother variation of the 

stress and higher peak value. However, Fig. 4-20b shows that results for TXZ/CTQ in the adherend 

are very different near the corner point: a characteristic "double peak5' is barely seen in the global 

analysis results, but is very obvious in the submodel results. 

Results presented in Figs. 4-21 thru 4-23 for the upper interface, which is at some (very 

small, indeed) distance from the corner point show that the difference between results of the 
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Fig. 4-19: Variations of aJaQ in the adhesive (a) and middle adherend (b) along the interface 
atyi=l,z/A = 0.3214. 

global and submodel analyses for all three stress components is only quantitative.  In each case 

the submodel analysis shows smoother stress variation near the corner point and higher pear 

value.  However, there are some problems in both the analysis approaches.  Namely, Fig. 4-2la 

indicates that the very right point of <JX variation in the adhesive does not tend to zero, as it 

supposed to be according to the free surface boundary condition (which was not, of course, 

imposed in the finite element solution). Though, as is seen in Fig. 4-2lb, the very right point of 

<JX variation in the adherend is close to zero, it may be occasional.  Where will this point move 

with further mesh refinement? Possibly, to higher and higher negative value.   Same questions 
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arise when analyzing results in Fig. 4-22.  Ideally, r xz should be zero at the very right points of 

the stress variations in the adhesive and adherend.  However, it seems that their trend is to take 

some negative values which will probably grow with further mesh refinement. 

The conclusion may be drawn from the above results that even at some very small distance 

from the corner point, the stresses computed with the global analysis and with submodeling 

technique are practically indistinguishable. The difference appears only in a small vicinity of the 

corner point, where submodeling definitely improves results for the stresses.  However, even by 

261 



0.05 \   (a) 

I    .    *    i    i    1  t—T  r     5  

i               : 

i>                    - 

0 

\ 

-0.05 z —o— Submodel 

—-•■--- Global 

n A 

: 
i    \   i   i    i    i . i   i 1   ....   1 

0.54 0.545 0.55   ,    0.555 0.56 x/a 

0.1 

0 - 

0.54 

-—o-—* Submodel 
...„».... Global 

0.545 055x/a   °555 °"56 

Fig. 4-21: Variations of ojc0 in the adhesive (a) and upper adherend (b) along the interface at 
y6=l,z/A = 0'.3571. 

using more and more refined local analyses, it seems impossible to satisfy all of the required 

stress boundary conditions in a proximity of the corner. In our opinion, this problem seems to be 

of a purely academic interest, because exactly at the corner the stresses are singular anyway, so 

failure mechanics is not applicable and, accordingly, failure initiation prediction is impossible. 

On the other hand, if applying averaging of the computed stresses along some finite area, their 

exact distribution in a proximity of the corner may be of absolutely no importance. 
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Fig. 4-22: Variations of aj<j0 in the adhesive (a) and upper adherend (b) along the interface at 
y/b=l,z/h = 0.3571. 
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4.14 Comparison of the Finite Element and Mosaic Model Results 

A comparison between numerical data obtained with 3-D finite element and 3-D Mosaic 

Model analyses is presented here. Now we return to the example of Gr/Ep-Al bonded joint (see, 

Fig. 4-1) described in Sections 4.2 and 4.3. Three variants of the finite element analysis are used 

for comparison: global analysis of l/8th of the structure shown in Fig. 4-lb with the element mesh 

G.ll described in Table 4-3 (about 80,000 d.o.f); Submodel 2 analysis of local region 1 

characterized in Section 4.6 with the element mesh L2.5 described in Table 4-17 (this was the 

third consecutive step of analysis with about 52,000 d.o.f), and Submodel 1 analysis of local 

region 2 described in Section 4.8 with the element mesh identical to L 1.1 of Table 4-5 (this was 

the second consecutive step of analysis with about 27,000 d.o.f). 

The mosaic model analysis has been performed for l/8th of the structure shown in Fig. 4-lb. 

Third degree Bernstein polynomials were used for the displacement approximation in all three 

coordinate directions. Strain/stress continuity between the same material bricks was not enforced 

in this analysis. The following number of bricks was taken: 12 in x-direction, 1 in ^-direction 

and 6 in z-direction. Total number of d.o.f is about 14,000. Distribution of 72 bricks in the x-z 

plane is schematically shown in Fig. 4-24. 

Gr/Ep Dummy 

Dumm1 f Al 

X-1 ^2^3^4^5    ^6 ^7 ^8^9^10^11^12 *13 

Fig. 4-24: Illustration of the brick distribution used in the Mosaic Model analysis. 
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The brick dimensions have been chosen according to the rule 

x2 - Xj = 4(x3 -x2)= 16(x4 - x3),   x7 - x6 = 4(x6 - x5 )= 16(x5 - x4), 

x8-x7 -4(x9-x8)=16(x10-x9)5   x13 -jj2 -4(x12-x11)-16(^1 -x10), (15) 

z2-zl^4fa-z2) = 16(z4-z3)5    
z7~z6 =4(z6-z5) = 16(z5~z4) 

Computed stresses are presented in Figs. 4-25 thru 4-31. Variations of crx obtained with 

Mosaic Model and with global FEA shown in Fig. 4-25 are practically indistinguishable. A 

comparison between the ax variations in the local region 2 shown in Fig. 4-26 and in the local 

region 1 shown in Fig. 4-27 also reveals only minor differences. For example, FEA results in 

Fig. 4-27b show higher peak stress value, however overall variations are very close. 

Results for <JZ obtained with Mosaic Model and global FEA shown in Fig. 4-28 are also 

hardly distinguishable. A comparison of the oz variations in local region 1 shown in Fig. 4-29 

reveals some quantitative distinctions near the peak, however overall shape of the variations is 

similar. 
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Fig. 4-25: Variations of ax / a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
global region aly/b = 1, z/h = 0.5. 
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Fig. 4-26: Variations of ax I a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
local region 2 aty/b = 1, zlh = 0.5 
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Fig. 4-27: Variations of ax I a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
local region 1 dXylb = I, z/h = 0.5. 
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Fig. 4-28: Variations of az I a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
global region dXylb = 1, zlh - 0.5. 

270 



3 

2.5 

2 

"1.5 

1 

0.5 

0 

-0.5 

-1 

(b) v       Submodel 2 (FEA) 
 Mosaic 

I    . _L 

0.46 0.48 0.5 0.52 0.54 0.56 

x/a 

Fig. 4-29: Variations of az / a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
local region 1 aty/b = 1, z/h = 0.5. 

Results for r xz obtained with Mosaic Model and with global FEA shown in Fig. 4-30 are, 

again, very close. A comparison between the T xz variations in the local region 1 presented in 

Fig. 4-31 shows only some quantitative distinctions near the peak, with similar overall shape of 

the variations. 

It has to be emphasized that Mosaic Model has been applied in a single step, for the whole 

global region, and with considerably smaller amount of d.o.f. than either in the global FEA or in 

the Submodel 1 and 2 analyses.   Nevertheless, the results are comparable even near the stress 
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peaks. When moving at some small distance away from the peaks, Mosaic Model provides 

practically the same stress data as submodeling technique, which requires a lot of pre-processing 

and post-processing effort and, besides, is more computationally expensive. 
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Fig. 4-30: Variations of T^ / a0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
global region aty/b = 1, z/h = 0.5. 
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Fig. 4-31: Variations of TX2 / cr0 in Gr/Ep (a) and Al (b) adherends in the x-direction for the 
local region 1 aty/b = 1, z/h = 0.5. 
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5.0 THREE-DIMENSIONAL ANALYSIS OF CRACK PROPAGATION IN DOUBLE- 
LAP COMPOSITE BONDED JOINTS 

5.1 Introduction 

Adhesively bonded composite structures have gained increasing interest in the aircraft and 

aerospace industries. At the same time, there is still a lack of understanding of their fracture and 

progressive failure mechanisms and scientifically sound analysis tools enabling to quantify the 

variety of possible fracture processes and predict the ultimate failure. 

It is well accepted today that adhesive joints usually fail by progressive growth of various 

type cracks and, hence, any realistic ultimate failure prediction should incorporate the fracture 

mechanics analysis. Starting with the early works [l]-[6], the scientific concepts, experimental 

and analytical methods of fracture mechanics have been extensively applied to adhesive bonded 

joints of metal structures. In one of pioneering works in this area [2] it was pointed out that 

"Cracks arise at the ends of the overlaps where stresses are maximal. The theory enables one to 

follow the development of the cracks without dealing with the problem of their generation which 

should be treated separately. The failing loads for the body as a whole are independent of the 

original crack size and can markedly exceed the loads corresponding to crack initiation." 

Another important methodological aspect has been emphasized in [5]: "Since bonded joints 

always fail by progressive crack extension, no gross or average stress criteria are adequate to 

describe their structural performance. Accordingly, designs must be based on a fracture 

criterion". Many subsequent theoretical and experimental studies of fracture of adhesively 

bonded metals (see, for example, reviews in [7], [8]) have justified that the crack propagation 

analysis is primarily important for predicting the joint strength. 

Increasing application of bonded joints with composite adherends made the problem of 

analytical strength prediction even more complex. Due to anisotropy and inhomogeneity of 

composites, the variety of possible failure modes which can be realized in their bonded joints 
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increases tremendously. It can be expected a priori that in this case, delamination and various 

intra-ply failure modes can develop simultaneously or even precede the adhesive or cohesive 

crack propagation. Many experimental results obtained in the long course of studying composite 

bonded joints confirm such an expectation. 

In one of the earliest experimental studies of bonded joints of unidirectional and angle-ply S- 

glass fiber reinforced plastics bonded by Hysol EA951 adhesive [9], a resin failure inside the 

composite adherend was observed. Another experimental study [10] showed that for carbon 

fiber composites bonded by a toughened epoxy adhesive Ciba-Geigy XD 911, all of the tested 

joints appeared to fail by interlaminar fracture inside the inner adherend. In experimental study 

[11] performed for bonded ARALL-1 single-lap and double-lap joints, it was systematically 

observed that the crack usually started in the spew fillet, but then penetrated into the prepreg 

layer closest to the adhesive. Such a crack then propagated inside the laminated adherend and 

caused the ultimate failure. It was even found that a small piece of aluminum remained on the 

failed surface, so the piece was fully separated from the aluminum layer during failure of the 

joint. This symptomatic result indicates that the crack can find a rather unusual penetration path: 

through a relatively strong aluminum layer of the adherend to a weak interface behind the layer. 

Certainly, such mode of failure can not be observed in the case of homogeneous metal adherends, 

simply because there are no interfaces. 

Recent experimental studies [12], [13] conducted for double-lap bonded joints of 

unidirectional and cross-ply composites have shown similar general trends. The adherends were 

made from Hercules AS4/3501-6 tape, and FM-300 adhesive was used. The observed cracks 

were typically initiated at the end of the overlap, where the transverse normal and shear stresses 

reach their maximum (rigorously, infinite) values. The initial crack was detected when the load 

reached   about  70%  of the  ultimate  failure  load.     The  crack was  then propagating  to 
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approximately the middle of the overlap. Upon careful examination under the SEM it was 

concluded that the crack propagation occurred within the laminated adherends, just several fiber 

diameters from the adhesive border. At some instant another crack was initiated at the other end 

of the overlap and propagated into the joint. The two cracks then linked via a third, inclined, 

crack which crossed the adhesive, and this caused final failure of the joint. 

The aforementioned experimental observations of the failure peculiarities of composite 

bonded joints have not yet found their theoretical explanation. Various fracture mechanics 

approaches have been applied to metal bonded joints, but at this time no methodology exists 

which could account for the variety of failure modes and fracture processes characteristic for 

composite bonded joints and predict their ultimate failure (this is evident, particularly, from 

reviews of existing analysis methods and computer codes [10], [14]). 

In section 1.4, a novel 3-D variational Mosaic Model analysis of crack propagation in 

composite structures has been proposed and illustrated on the example of modeling growing 

planar delamination in a double cantilever beam. This Section presents an extension of this 

analysis approach to 3-D crack propagation modeling in adhesive bonded joints of unidirectional 

and cross-ply laminated composite adherends. Some preliminary results of this study were 

reported in [16]. 

5.2    A Synopsis of 3-D Mosaic Model and Variational Analysis Approach 

The purpose of 3-D Mosaic Model, which was originated in [17], is to develop a unified 3-D 

stress/strain, fracture and damage predictions tools applicable to a variety of composite structural 

elements. The simplest examples of structural elements which can be treated in the Cartesian 

coordinates are: rectangular laminated and sandwich plates, their single-lap and double-lap 

bonded joints, rectangular plates stiffened in one or two orthogonal directions with bonded 

rectangular stiffeners (the examples are illustrated in Figs. 5-la, 5-2a and 5-3a).   As shown in 
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Figs, lb, 2b and 3b5 when adding the necessary blocks of a "soft59 material in each of these cases, 

the structural elements can be "filled up" to the full mosaic parallelepipeds. In all cases of Figs. 

5-1 thru 5-3 the parallelepipeds contain four distinct materials, and thus possess the step-wise 

property variations in two coordinate directions. It is easy to imagine various more complex 

structural elements (an orthogonally stiffened panel, for example), which can be represented 

through the mosaic parallelepiped with the material property variation in all three coordinate 

directions. 

Thus, a practically important set of structural elements can be treated in a unified manner, by 

the use of a generic Mosaic Model shown in Fig. 5-4. The model can incorporate any number of 

bricks; each of them may have distinct material properties, or some may have identical 

properties. It has to be emphasized that "soft59 material bricks are only added for the convenience 

of analytical work and simplicity of the input and output routines. At some stage of the 

algorithmic derivations they are eliminated by simply renumbering the actual material bricks. A 

detailed description of the model and analysis approach is in sections 1 thru 4. In this section we 

HÜ Adherend 1   ■ Adherend 2   Hi Adhesive   i! "Soft" Material 

Fig. 5-1: A single-lap adhesive bonded joint (a) and its mosaic model (b). 
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present a brief description of the analysis approach which is necessary to further explain its 

application to the crack propagation problems. 

A build-up of the mosaic body shown in Fig. 5-4 is fully defined by three sets of orthogonal 

planes x = xn y = ym and z = zn (/ = 2,...,Z, m = 2,...,M, n = 29...9N). There are l 

anisotropic bricks in the body, each of them characterized by 21 elastic constants. Those 

discretization planes which separate distinct material bricks have a physical meaning while those 

which separate the same material bricks have purely computational meaning. At the first step of 

the algorithmic derivations it is suitable to not distinguish between the physical and 

computational discretization planes. The number of planes belonging to any of these types in the 

model is only limited by the computer capabilities. 

The stress-strain relations for the ${h brick are written in the conventional form 

a|8)(r) = C|?)8f)(r),   i,j = l,...,6 0) 

\m Adherend 1      ■ Adherend 2     ill Adhesive     £1 "Soft" Material 

Fig. 5-2. A double-doubler adhesive bonded joint (a) and its mosaic model (b). 
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where a^ and sis) are stresses and strains, C^ are stiffness matrix components, and 

r={x,y9z} is a position vector. In the present version of the analysis, the above strains are 

related to the displacements ^(x9>y,z), u2(x,y,z)and u3(x,y,z), which correspond to the x, y 

and z directions, through the equations of linear 3-D elasticity: 

(s) 

dx 
Js) _ 0U2 Js) _ OU3 

dy 
-, e\'=- 

dz 
fy>    du®    du® 

e® = —L- + ■ 
dz       dy 

(2) 

(s)    du[s)    du®     (s)    du®    du® 

dz       dx dy       dx 

The variational analysis developed for the Mosaic Model is based on the principle of 

minimum total potential energy written for the entire mosaic body: 

m = &(p~w)=o (3) 

(a) 

(b) 

111 PaneI    lli Stiffener     jjjj Adhesive    [^J "Soft" Material 

Fig. 5-3: A panel with adhesively bonded stiffener (a) and its mosaic model (b). 
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where P is strain energy and W\s work of external surface forces. The total potential energy II 

is further represented as the sum of potential energies Yl(s) of all bricks in the body 

s=\ 

S 

y n = j;n(J) = i;(p(,)-»r(5)) (4) 

where S = LMN. To further proceed with the evaluation of (4), it is necessary to use the stress- 

strain equations (1)9 the strain-displacement equations (2), and also to specify the assumed form 

of 3-D displacement field.  Here we represent the displacement field in the sth brick through the 

following triple series: 

I     J     K 

u{:](x,y,Z) = ZHTUf^)Yj(y)zM  a = 1,2,3 (5) 
/=0 >0 £=0 

where integer values /, J and K define number of degrees of freedom (d.o.f) contained in the 

model; U^s) are undetermined coefficients; Xt(x), Yj(y)  and Zk(z)  are three sets of basis 

functions.  At this point we do not need to specify them. Note that according to (5) the primary 

number of d.o.f. is 3S(I +1)( J 4- l)(K +1). Having the displacement field representation (5) it is 

N + 1 

Z 
N 

LMN- 
LWI + 1 

... LMN- 
LM + L 

... ... 

Lflfl + 1 
... 

LM + L 

1 ... L 

M + 1 

X      V1 
L + 1 

Fig. 5-4: Brick nomenclature in the mosaic body model. 
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possible to analytically derive expressions of P{s) and ]¥s) entering in (4). 

One significant step of the algorithmic derivation is to define the kinematically admissible 

displacement field. This means that for each specific set of kinematic boundary conditions, the 

primary displacement approximation (5) has to be modified. Specifically, after imposing some 

external kinematic boundary conditions, certain coefficients from the primary set U^s) become 

known values (particularly, some of them may be zero)» The corresponding "reduced" set of 

undetermined coefficients is further denoted U^s).   After that the running indices i, j9 k in (5) 

can be rearranged for the convenience, in order to maintain their starting value 0.   The upper 

summation limits in the displacement series may now differ from those in the primary form (5); 

the   new   summation   limits   are   denoted   I{
a
s) < I,    J{

a
s) < J,   and   K(

a
s) < K   (a = 1,2,3). 

Accordingly, the displacement field is now represented in the form 

ui\x,y,z) = ftftfd^Xl(x)!rj{y)Zk{z)+ T     Y      fü^X^Y^Z^z)        (6) 
;=0 7=0 *=0 i=/F+l yWT+1 k=K®+\ 

where U^s) are known values. The total number of d.o.fi in the model is now 

d,.f. = ±±{l^ + xlj^ + l\K^ + l) (7) 
s=l a=l 

Note that the above modification of the primary displacement representation (5) is, 

essentially, analogous to the "condensation" procedure of a conventional finite element analysis. 

Importantly, the form of displacement field (6) may contain different number of undetermined 

coefficients for different bricks while the primary form (5) assumed equal number of them for all 

of the bricks. 

Using the primary displacement representation (5), the total potential energy function (4) is 

written in the form 
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n = t nw(c^w)= t H^J-^WO] (8) 
5=1 S=[ 

where it is emphasized by the arguments in parentheses that the strain energy and work of 

external surface forces are fully defined in terms of the displacement approximation coefficients. 

The following expressions of Pis) and W(s) are then obtained: 

pW=Iü(')rA(,)U(,) 

2 

(s) _ji(synk(s) WKS) = U 

(9) 

(10) 

where 

U (s) 

up 
■   Q (s) 

{er} 
■{or} 
[{e?'} 

■;   A1" = 

a'!1" ' ijk,pqr _ 

a21(i) ' ijk,pqr _ 

a3'w ' Ijk ,pqr 

~ams) ' ijk ,pqr 

'a22U) ' ijk,pqr _ 

a32(s) ' ijk,pqr 

™yk,pqrj 

yk,pqr J 

a3.3W 
ijk,pqr 

(11) 

Explicit expressions of a^^ and £)?/s) can De found in [15]. 

To accomplish the condensation procedure, the vectors and matrix in (1.11) are substructured 

as following: 

U M_ U ur 

TO 

Q,"iS ^(s)_ (s)_ 
'AW    AM" 

\{s)       AU) 
^ba       ^bb 

(12) 

(s) where U^} and Q^} correspond to 

/=au,4J); 7 = o,u,4J); * = o,i,...,^j) (1.3) 

(■*) and U^j and Q{
b
s) correspond to 

r   -     TW is) i = /<" +1,...,/ ; 7 = J^ +!,...,/; k = KZ>+19...,K (14) 
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Accordingly, A^, A^, A^ and A^ correspond to the following combinations of the 

(16) 

(17) 

aa 9 ab °> ba bb 

indices: 

A£ to 1,^ = 0,1,...,/?;  j,q = 0X..,J(:\  k,r = 0X...,Kis) (15) 

A« to i = 0X...J{
a
s);p = I{:] + l,..J; 7=0,l,...,/is); q = J^+l...,J; 

k = 0,l...,K{:];  r = K{
a
s) + l,...,K 

A« to i = i^+\,...j- /J = o,i...,/ir); j = J{a)+l-,J; q = o,i,..,J%); 

k = K^ + l,...,K;   r = 0,l...,K^ 

and A$to i,p = I{
a
s) + l,...,I; j,q = ßa

s)+ \,...,J; k,r = K?+ 1,...,K (18) 

The following expressions are then obtained from (9) and (10) with the use of (12): 

P(S) = -(vfA^f +vfA^V^ +vfA^V[s) H-U^A^U^) (19) 

W(s) = U{
a
s)TQ{

a
s) + \J{

b
s)TQls) (20) 

It is worth mentioning that the first term in (19) is a quadratic form of the undetermined 

coefficients, the second and third terms are their linear forms, and the fourth term is a constant. 

The first term in (20) is a linear form of the undetermined coefficients, and the second term is a 

constant. 

It is known that one of the consequences of the variational principle (3) are Ritz-type 

equations which are, in our case, written in the following form: 

dP{s)    BW(s) 

dU{?] ~ dUis) = 0 (21) 

where    (s) and     UJ are defined in (19) and (20).  Before imposing connectivity of the bricks, 
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(21)   provides   S   separate   systems   of  linear   simultaneous   equations,   each   containing 

3 

X(^5)+1)(^5)+1)(^)+1)   unknowns-    The $th system of linear simultaneous  equations 
a=l 

derived from (19)-(21) with account for the symmetry of matrix A (that has been shown in [15]) 

is then written as following 

Ksya
s) = Qis) - KMS) (22) 

Note that the right hand side of the above system contains both the external surface forces and 

external displacements acting on the brick. 

The above result allows one to solve any 3-D elasticity problem for an anisotropic brick with 

prescribed displacements, surface forces or any appropriate combinations of thereof. It has to be 

pointed out that no a priori assumptions have been made yet regarding specific type of basis 

functions in the displacement approximation (5) or regarding the number of basis functions 

determined by the values /, / and K. A specific choice of basis functions can be motivated by 

their preferable order of continuity, analytical convenience, higher convergence rate, 

computational stability, and other considerations. 

Further development of the theory needs to address the internal geometric and static 

boundary conditions between the bricks. With the use of the brick nomenclature introduced 

earlier (see Fig. 5-4), a full set of the displacement continuity conditions in the mosaic body can 

be formulated as following. For the inter-brick boundaries perpendicular to the x-, y- and z-axis, 

respectively, it is obtained: 

u«»»\xl,y,z) = u«+l<»')(xl,y,z) (23) 

ufm'll)(x,yn,z)=uf'm^\x,ym,z) (24) 

K(,^Hx,y,zn) = ufM\x,y,zn) (25) 
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where a = 1,2,3 in all three equations and 

s{l,m,n) = ! + (/- 2) + (m-2)L + (n-2)LM (26) 

The following values of /, m and n apply: 

1 = 2,...,L;  m = 2,...,M + l;  n = 2,...,N + l (27) 

in (23), 

/ = 2,...,Z+1; m = 2,...,M; n = 2,...,N + l (28) 

in (24) and 

l = 2,...,L+\; m = 2,...,M + l;  n = 2,...,N (29) 

in (25). 

Further, considering continuity conditions of transverse stresses at the inter-brick boundaries, 

the following is obtained for the boundaries perpendicular to the x-, y- and z-axes, respectively 

(double-index notations an =<T15 <T22 =CT2, ö"33 — <?I, <^2J =cr4, <x31 =cr5, crl2 = cr
6 are used 

below for conciseness): 

a^'"^(x/,v,z) = <f1-")(x/,7,z) (30) 

^W..*)=<4'^W«.*) (31) 

^X*,y>z.)=<£"*\x,y,zn) (32) 

As before, a =1,2,3; the variation of index s is defined by (1.26), and the indices /, m, n run 

the values (27), (28) and (29) for the cases (30), (31) and (32), respectively. Equations (23)-(32) 

formulate a complete set of the displacement and stress continuity conditions between the bricks 

in the Mosaic Model, and thus can be used for any structural element allowing for such a 

modeling. 
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Next step of the solution procedure is to express these conditions in terms of undetermined 

coefficients of the displacement approximation. However, this step can be only accomplished 

after the basis functions are fully defined.  In the present analysis the following basis functions 

are taken for the brick located between the planes xl and xM, ym and y »i+i'   n and z„+i 

X,(x) = 

m- 

[0 = else 

B>.{y) = -JL 
iV)       a(j_ 

Y 

\XM 
KD 

\'~l 

\ Xl+l       Xl J 

/orie^jc,,,] 

f\j-n 
y-y«. 

Y ( V'J 

ym+i-y 

[0 = else 
yy. m+l       s m J y„, y, \Sm+l      Sm) y« 

f°ry^[ym>ym±\] 

(33) 

(34) 

[0 = else 

f z~z"" 
k f                      \ 

Zn+i~
Z 

V Zn+\ ~ Zn J ^ Zn+\ ~~ Zn J 

K-k 

forz&[z,t,zn+x] (35) 

In this manner, the triad /, m and n define the basis functions for all of the bricks. 

The Bernstein polynomials possess certain valuable properties which make them suitable for 

developing elegant mathematical solutions and computational algorithms for various types of 

boundary value problems of elasticity. One of the properties is that it is possible to identically 

satisfy a practically important class of the external kinematic boundary conditions, namely 

uniformly distributed displacements applied over the exterior surface of the structure or some 

part of thereof (see Section 1-4 for details). Another property, which may be of a special 

importance from the standpoint of the computational efficiency, is that the Bernstein polynomials 

yield smooth approximants [18], e.g., they provide simultaneous approximation for the function 

and its derivatives. 

It is easy to show that with the use of (33)-(35) the displacement continuity conditions (23)- 

(25) can be expressed in terms of the undetermined coefficients as 
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T ra,s(l,m,n)   __ Tra,s(l+\,m,n)      r ja,s{l,m,n)   _ j ra,s(l,m+\,n)      j ja,s(l,m,n)   _ r ra,s(l,m,n+\) C\f\\ uijk        ~uojk i uuk        ~uiOk i u ijK        -uijo wu; 

for all respective ij and k. The values of s, I, m and n in (36) are defined by (26) and (27)-(29). 

If all of the relations (36) are satisfied, then the solution of any specific boundary value problem 

provides continuous displacement field everywhere in the mosaic body, regardless of the material 

properties of individual bricks. 

Further, with the use of basis functions (33)-(35) it is possible to analytically formulate the 

conditions of strain and stress continuity between adjacent bricks made from the same material. 

The corresponding relations are obtained in the following: 

ua,s(Ul,m,n)  =
XUl~XJ-l  jjaAijnj) „ XM ~ Xl   JJ«AJM*) .    . = Q^^J.    £= 0,1,...,£        (37) 

XI ~ Xl-\ Xl  ~ Xl-\ 

jjaXijn+lj)  = yjn + l -yjn-l  jjaMlmß) _ ^iff+1 ~ Vm   jjaMJnJi);   / = 0,1,...,/;   £=0,1,...,^     (38) 

y m       ym-\ y m       y m-\ 

ua,s(I,m,n + l)  = Zn+l  " Zn-X  jjaXlMJ)  __ Zn+l  ~ Zn ^aXW).    /= Q, 1,...,/; 7 = 0,1,.../ (39) 

Zn   ~ Zn-\ Zn  ~ Zn-l 

In the present analysis, the conditions of continuity of transverse stresses at the interfaces 

between distinct material bricks are not imposed, but rather expected to be accurately satisfied in 

a "soft" sense, as the natural boundary conditions. Accordingly, the notations / , m and n in 

(37)-(39) emphasize that not all values from the sets {/}, {m } and {n } apply, but only those 

which correspond to the boundaries between the same material bricks. 

After a full set of the displacement and stress continuity relations for the inter-brick 

boundaries in the mosaic body has been formulated in terms of the displacement approximation 

coefficients, the next necessary step of the analytical development is to incorporate them into the 

computational algorithm, which requires another condensation.  Description of this procedure is 

omitted  here  due  to  its   algorithmic  complexity.     It  can  only  be mentioned  that  after 
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accomplishing this algorithmic step, the unknowns contained in (22), which correspond to 

different brick numbers, s, become mutually interrelated. Hence, the coupled system of linear 

simultaneous equations is obtained, which usually contains significantly less unknowns than all 

of the unrelated systems (22) together. Numerical solution of the system may be performed 

following common routines.   This provides numerical values to some part of the displacement 

approximation coefficients U^s). The rest of them is then obtained from the continuity relations 

(36)-(39). 

After all coefficients in the displacement approximation (6), Ü^s) and U^s), have been 

defined, the summation of the respective triple series can be conducted to result in the 

displacement values for any given combination of the coordinates x, y and z. Further, the strains 

can be obtained by substituting (6) in (2). Finally, the stresses can be computed through the 

strains by the use of (1). Note that the displacements, strains and stresses are calculated directly 

from their analytical expressions for any given point of the structure, including interfaces, 

without applying any extrapolation to the nodes, smoothing, or other commonly used finite 

element postprocessing procedures. Output of the analysis provides displacements, strains and 

stresses at any point of the structure or their 2-D and 3-D plots along the coordinates. 

5.3    3-D Crack Propagation Analysis Using Mosaic Model Approach 

Having the theory presented in the previous section, our next objective is to develop fracture 

mechanics approach aimed at analyzing the propagation of 2-D planar cracks in the mosaic body. 

Assuming that a general 3-D state of stress takes place, including both the normal and shear 

stresses, the following additions should be made in order to introduce the crack: 

(a) In the case of a tensile normal stress between the bricks in that location where the crack is 

introduced, the crack opening and, possibly, also sliding would take place. In other 

words, the respective free surface would be created.    The corresponding continuity 
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relations from the sets (36)-(39) should be then identified and eliminated. 

(b) In the case of a compressive normal stress between the bricks there is no crack opening 

but may be sliding. Again, the respective continuity relations from the sets (36)-(39) 

should be identified and eliminated. In addition to that, the non-penetration conditions 

have to be incorporated in this case. Also, it is possible to incorporate friction forces, 

assuming that the coefficient of friction between the bricks is known. 

The described approach allows one to solve various problems concerning a planar crack 

propagation in any of the three orthogonal directions, either between distinct materials or inside 

the same material. It is further assumed that the crack is allowed to grow in discrete steps; this 

requirement means that only two adjacent bricks may be separated at each crack increment. 

Dimensions of the separated bricks, which determine the crack area increase, are defined by the 

chosen computational brick mesh. It is worth mentioning that unlike in the known finite element 

methodologies, where the displacement continuity conditions are relaxed only for the nodes, the 

present methodology allows one to relax the continuity conditions along the entire surface 

element in each step of the crack propagation modeling. 

The total potential energy release rate can be then evaluated directly from expressions (8)- 

(10) by applying them to two consecutive states of the body with the crack. If the total potential 

energy at some state "K" is XI^ and at the state "K+l" this is HK+l, then the energy release rate 

corresponding to the Xth crack propagation step is 

GW=UK~UK+1 (40) 

where ASKiK+l is the area between two bricks which have been separated in this step. The value 

of GKiK+l is defined entirely by the change of the coefficients U^s) when the crack propagates 

from the state K to K+l. 
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The main algorithmic steps of the developed crack propagation analysis can thus be 

summarized as following: 

(i) a single starter planar crack or multiple starter cracks between the specified bricks are 

introduced; this is accomplished by relaxing the respective continuity conditions from the 

sets (1.36)-(1.38); 

(ii) stress/strain analysis of the mosaic structure containing the starter crack(s) is conducted; 

(iii) the total potential energy in the presence of the starter crack(s) is computed; 

(iv) the surface increment is given to the starter crack(s), and the steps (ii) and (iii) are 

repeated; the brick mesh is adjusted to the change of location of the crack tip; 

(v) the energy release rate (ERR) is calculated using results of steps (iii) and (iv); 

(vi)the critical energy release rate (CERR) criterion is applied as the crack growth condition; 

if the CERR criterion is satisfied, then another crack increment is applied; if the CERR 

criterion is not satisfied, then the external load/displacement magnitude is increased, and 

the loop (ii)-(vi) is repeated. 

It has to be pointed out that the described crack propagation analysis approach is based on the 

total potential energy evaluation at different states of the cracked mosaic body. The evaluation is 

performed using expressions (8)-(10) which, as mentioned before, only utilize the displacement 

approximation coefficients and do not assume any information about the strain and stress fields. 

The roots of this methodology, though discussed in the context of the finite element analysis, can 

be found in [19], where two different options of the strain energy evaluation were considered. It 

was pointed out in that work that using the straightforward approach to calculate strain energy in 

terms of the strain and stress fields may be disadvantageous, because these fields "cannot be as 

accurate   as   the   original   output   from   the   finite   element   computer  program   which   is 
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displacements". It has been further recommended in the aforementioned work that " it would be 

more accurate to use the original stiffness matrices, force vectors, and displacement vectors to 

calculate strain energy." The present analysis complies with this approach. However, various 

other numerical approaches to the evaluation of ERR in adhesive bonded joints are known in 

literature; a summary of them can be found in [20]. 

Next two sections are devoted to numerical examples illustrating application of the developed 

analysis approach. 

5.4    Analysis of Double-Lap Joint with Unidirectional Composite Adherends 

Consider a double-lap adhesive bonded joint shown in Fig. 5-5a. Geometric parameters 

adopted in the analysis are: 

al = a3 — 5115mm(2.25in.), a2 = 25.4mm (1 zw.),  2a = ax +2a2 + a3 = 165.1mm(6.5m.), 

2b = 25.4mm(lm.), \ = Ä, = 2/^ = 2.286mm (0.09m.),  ha = 0.127mm (0.005m.)       (41) 

All adherends are made from 16 plies of unidirectional Graphite/Epoxy tape AS4/3501-6; the 

following elastic characteristics are used: 

EL = 133 GPa (l93Msi\  ET = 10.7 GPa {\.55Msi\ GL = 7.03 GPa (lQ2M$i\ 

(42) 

GT = 4.07 GPa (0.59 Msi\ vLT = 0.30 

The bonding adhesive is Cytec FM300-2K film (containing 3% woven glass scrim) with the 

following elastic characteristics: 

E = \MGPa (0.506A&/); v = 0.30 (43) 

Processing and testing of the described bonded joint specimens was reported in [12], [13]. 

In order to save computational time and memory, the following simplifications of the 

problem have been applied.    Due to symmetry of the geometric configuration and material 
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properties, displacement ux must be zero along the whole cross-section perpendicular to the x- 

axis and passing through the point x = 0 of the joint (see Fig. 5-5b). Also, displacement uy 

should be zero along the cross-section perpendicular to the y-axi$ and passing through the center 

of the joint, and displacement uz should be zero along the cross-section perpendicular to the z- 

axis and passing through the center of the joint. The respective symmetry conditions reduce 

analysis of the structure shown in Fig. 5-5a to its l/8th part which is shown in Fig. 5-5b. After 

that, following the "soft" material concept we fill-up the structural element of Fig. 5-5b to the 

mosaic parallelepiped shown in Fig. 5-5c. Now, the structural element to be solved contains 

three distinct materials: unidirectional Gr/Ep composite of the upper and middle adherends, 

Cytec FM300-2K adhesive material and a "soft" material. As mentioned before, the latter one is 

introduced only for convenience of the brick nomenclature and computational mesh description. 

The respective soft material bricks are eliminated from the actual computations. 

In the experimental studies [12], [13] the force-controlled regime has been applied. In this 

theoretical study we consider both the displacement-controlled and force-controlled regimes. In 

the former case, the kinematic boundary condition of uniformly distributed displacement F^ is 

imposed at the right (loaded) end of the middle adherend. Thus, the full set of kinematic 

boundary conditions is formulated as following 

ux = 0  at x = 0;  ux - u0  at x = a ;  u  = 0 at y = 0;  uz = 0 at z = 0 (44) 

Schematic of 3-D computational brick mesh used in the analysis is shown in Fig. 5-6. For 

convenience,   the  following  notations  of the  intervals  are  introduced:   in the x-direction 

[x(p),x(;}+1)] with ;7 = 0,1,2,3; in the ^-direction [y*\.y(*+1)] with ? = 0,1; in the z-direction 

|z(r),z(r+1) with r = 0,l,...,5. Numbers of bricks in these intervals are denoted Lp+l9 Mq+l and 

Nr+l, respectively (note that  L = ]T Lp+l ,   M = ^lMg+l   and  N = ^Nr+l). Now, the 
p q r 
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Fig. 5-5. Double-lap composite bonded joint (a), its l/8th part (b) and mosaic model (c). 

following relations are established between the newly introduced coordinates with superscripts 

and the coordinates with subscripts shown in Fig. 5-4: x{p) =xp, y{q) = y0, z(r) =zRJ where 
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P = l + £l,, Q = l + J^Mj and R = l + j^Nk. 
/=1 M k=\ 

Further, to characterize nonuniformity of the brick meshes the following parameters are 

introduced: 

h n+\  ~' 

XL+\       XL 

Xln+2       Xln+i 
1*+l 

ynin+l       sn 

y m„+2 ■y,n„+x 
■> x r+l 

z,,+i -z»,. 

Zn,.+2       Zn,.+\ 

(45) 

where sets of numbers il\ , lm\ and [nr] are defined as follows 

p p+\ q q+\ r r+\ 

1=1 1=1 j=\ j=\ k=\ k=l 

Thus, the following set of input parameters fully characterizes the computational brick mesh: 

p, q, r, Lp+l, Mq+l, Nr+l, % p+{, TJ q+i, and z,-+i ■ The mesh Pattern can be adjusted to various 

other problems by simply changing the sets of numbers {p}, {q} and {r}. 

A detailed description of nine 3-D meshes used in this study is given in Tables 5-1 thru 5-4. 

Third degree Bernstein basis functions, corresponding to I = J = K=3 in (33)-(35) have been 

U6) 
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y 
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Fig. 5-6: Mesh design in the x-z (a) andj/-z (b) planes. 
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taken for all three coordinate directions. 

Table 5-1: Characteristics of the brick meshes in the x-direction 

Mesh in x 

XI 4 3.35 1 - 1 

X2 4 3.35 2 1 2 

X3 4 3.35 3 1 3 

X4 3 5.25 2 0.5 1 

3 0.14 

3 0.14 

3 0.14 

3 0.14 

Table 5-2: Characteristics of the brick meshes in the y-direction 

Mesh in y Mx 1\ 

Yl 1 - 

Y2 2 1 

Y3 2 4 

Table 5-3: Characteristics of the brick meshes in the z-direction 

Mesh in z Nx Xi #2 Xi N3 Zi ^4 XA N5 %5 N6 X6 

Zl 3 1.5 1 - 1 - - - 3 0.5 

Z2 3 1.5 2 1 2 1 - - 3 0.5 

Z3 3 1.5 3 1 3 1 - - 3 0.5 

Z4 3 1.5 1 - 1 - - - 3 0.5 

Z5 3 2 1 - 1 - - - 3 0.3 
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Table 5-4: Computational variants used in the analysis 

Variant No. Mesh in x Mesh in y Mesh in z 

1 XI Yl Zl 

2 X2 Yl Zl 

3 X3 Yl Zl 

4 XI Yl Z2 

5 XI Yl Z3 

6 XI Y2 Zl 

7 XI Y3 Zl 

8 X4 Yl Z4 

9 X4 Yl Z5 

First consider numerical results illustrating distributions of the potential energy density of the 

bricks, defined as D{s) = Yi{s)/Vis) , for the following four cases: (i) without any crack, (ii) with 

"I-crack" (interlaminar crack) introduced in the middle adherend between the first and second 

layers closest to the adhesive, (iii) with "A-crack" (adhesive crack) located at the interface 

between the middle adherend and adhesive, and (iv) with "C-crack" (cohesive crack) located at 

the mid-thickness of the adhesive layer. Length of all three cracks is taken 

c = 0143mm (0.0056m.), which corresponds to the thickness of a single unidirectional ply in the 

adherends,      . In all the above cases the cracks occupy entire width of the joint. 

Schematic of the brick distribution in the x-z plane is shown in Fig. 5-7. The brick mesh 

variant No. 1 of Table 5-4 has been used in these computations. The horizontal dimension of 

Bricks 32 and 33 as well as the vertical dimension of Bricks 32 and 59 are equal to the ply 

thickness hp. By noting this the mesh description is completed. 

Histograms presented in Fig. 5-8 reveal some interesting features of the potential energy 
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density distributions D(s) in the joint and its sensitivity to the presence of the interlaminar, 

adhesive and cohesive cracks. When considering the lower row of bricks, Nos. 1-8, it is seen in 

Fig. 5-8a that the D(s) is relatively small, its variation is shallow, and it reaches maximum at the 

loaded end of the middle adherend. Besides, the D{s) distribution is not visibly affected by the 

cracks. For the second row of bricks, Nos. 10-18, see Fig. 5-8b, the trends are similar. End of 

the overlap makes a more pronounced effect on the third row of bricks, Nos. 19-27, as seen in 

Fig.  1.8c. However, the crack effect is still barely visible. 

Further, when considering the fourth row of bricks, it is seen in Fig. 1.8d that the maximum 

of D(s) corresponds to Bricks 32 and 33 which are closest to the corner point. The presence of 

the C-crack slightly increases Dis) in Bricks 30 and 31 (those gain some extra load) and, at the 

same time, decreases D(s) in Bricks 32-34. The A-crack effect on the bricks belonging to the 

same row is quite different: Bricks 30-32 get overloaded while Brick 33 gets significantly 

unloaded. At the same time the effect of the I-crack is negligible: only Bricks 32 and 33 get 

slightly overloaded. 

Considering the fifth row, see Fig. 5-8e, which contains five bricks of the adhesive, Nos. 37- 

41 (Nos. 42-45 were prescribed to soft material bricks), it is seen that the highest D(s) is reached 

82 83 84 85 86 

A-crack                      « 
y/,C-crack                      i 
yy I-crack                        ! 

73 74 75 76 77 

64 65 66 67 68 

55 56 57 58 59 

46 47 48 49 50 

37 38 39 40 41 

28 29 30 31 32 fa 34 35 36 

19 20 21 22 23 24 25 26 27 

10 11 12 13 14 15 16 17 18 

1 2 3 4 5 6 7 8 9 

Fig. 5-7: Brick nomenclature for the mesh variant 1 of Table 5-4. 
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in Brick 41 in both the cases, without cracks or with the I-crack. However, in the presence of the 

C-crack this brick is partly unloaded, and the maximum of D(s) moves to Brick 40. The effect is 

even stronger in the presence of the A-crack: Brick 41 stores very little energy while most of the 

energy is stored in Brick 40. 

Results presented for the sixth row of bricks in Fig. 5-8f show again that the I-crack makes a 

negligible effect. The effect of the A-crack is also very small, except for Brick 50 which now is 

almost unloaded. The maximum of D{s) is reached in Brick 49 in all four cases. In the presence 

of the C-crack this brick gets some overload while Brick 50 is almost fully unloaded. Finally, it 

is seen in Figs.  1.8g and 1.8h that the seventh and eighth rows of bricks store very small portion 

of the total potential energy, and there is no visible crack effect on the respective D(s) 

distributions. 

All of the discussed details of the energy density distributions seem reasonable from the 

mechanistic standpoint. Indeed, one could have anticipated a priori that the most overloaded 

part of the joint should be near the corner point, i.e., Bricks 32, 33, 40, 41 and 49, and that the 

highest potential energy density should be in Brick 40. This expectation is exactly confirmed by 

the obtained results. Further, one could anticipate that the effect of the I-crack should be most 

pronounced on Bricks 23, 32 and 33, and this is seen in Figs. 5-8c and 5-8d. The most 

pronounced effect of the A-crack could have been expected on Bricks 31, 32, 33, 40, 41 and 50 

which is clearly shown by Figs. 5-8d, 5-8e and 5-8f. Finally, one could predict that the C-crack 

would mainly affect Bricks 31, 32, 33, 40, 41, 49 and 50, and this is also evident from Figs. 5-8d, 

5-8e and 5-8f. The performed potential energy density analysis is useful for identifying the most 

loaded sites of the structure and their relocation with the propagation of I-, A- and C-cracks. 

Next we present results of the convergence study conducted in this work. Three meshes in 

the x-direction  (see variants 1-3 of Table 5-4) and three meshes in the z-direction (variants 1, 4 
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and 5) were employed. Numerical results obtained for various structural response characteristics 

are presented in Tables 5-5 and 5-6 for the analysis cases without any crack and with the A-crack 

having length c = hp. The following characteristics are given in Table 5-5: D = Tl/V, where II 

is total potential energy and V is volume of the structure shown in Fig. 5-5b; Dy = Tly/Vy, 

y =1,2,3, where II and Vy are potential energies and volumes of the following regions: 

z(1),z(2)]    (termed   Region   1,   corresponds   to   y=l)l    x e\ X G x(1\x(2) x(2\x(3) 

Z G z(I),z(2) (Region 2, y - 2); x G M) |z(2),z(3) (Region 3, y = 3).   In all three \*(2)],ze[; 

cases y G[0,ö].   Further, a sum of the above values, D{_3 = £\ +D2 +£>3, is also presented. 

Also,     the     normalized     displacements     computed     exactly     at     the     corner     point 

(x = x(2), y = 0, z = z(2)) are shown in Table 5-5. 

300 



40 

20 

10 

I   '    I ■•" i  • 

D No crack 
B l-crack 
Ü A-crack 
m C-crack 

2      3      4      5 
Brick Number 

(a) 
40 

E 
£ 

~5 30 

^ 
c 20 
(D 
Q 

0) 10 
<J> 
c 

LU 0 

D No crack 
l-crack 

H 
m 

A-crack 
C-crack 

(b) 

Brick Number 

50 

40 

£30   'T 

Q 20 

10 

D No crack 
H l-crack 
m A-crack 
m C-crack 

Q uwm\ 

(c) 

19     20    21     22    23     24    25    26    27 
Brick Number 

28    29    30    31     32     33 
Brick Number 

37     38    39     40     41 
Brick Number 46    47    48     49    50 

Brick Number 

40 

Q 
10 

30   - 

20   - 

rwMil Wjfc 

(A) 

n No crack 
3 l-crack 

H A-crack 
■ C-crack 

55     56    57     58    59 
Brick Number 

£ 
| 30 

.   '   I    '    I    '    I   '    I    '    I 

TTWH I r^w i fPl t narr« i __^1 

•  i  ■ i ■ i 

g 20 
Q 

E? 10 

D 

Ü 
m 

No crack 
l-crack 
A-crack 
C-crack 

z 

c 
. i i 1    .    1. '• 

64    65 66     67    68 
Brick Number 

Fig. 5-8: Histogram of the potential energy density distribution in the double-lap bonded joint 
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Table 5-5. Convergence of the global and local potential energy densities and displacements at 
the corner point with the mesh refinement in the x- and z-directions. 

Mesh 
variant 

D 
j/mm3 

j/mm3 j/mm3 
A 

J/mm3 
A-3 

j/mm3 

Ux(x®,0,Z®) M,(x<2),0,zW) 

Without crack 

1 3.7479 34.065 34.613 63.146 131.82 0.1668 0.01111 

2 3.7479 34.317 34.468 62.750 131.54 0.1668 0.01105 

3 3.7479 34.374 34.437 62.683 131.49 0.1668 0.01103 

4 3.7479 34.114 34.696 62.770 131.58 0.1668 0.01125 

5 3.7479 34.129 34.708 62.696 131.53 0.1668 0.01128 

With the A-crack 

1 3.7435 36.071 26.380 7.7789 70.230 0.1691 0.00457 

2 3.7435 36.013 26.362 7.3635 69.739 0.1691 0.00461 

3 3.7435 36.002 26.361 7.2962 69.659 0.1691 0.00461 

4 3.7435 36.092 26.394 7.7133 70.199 0.1692 0.00455 

5 3.7435 36.101 26.386 7.6982 70.185 0.1692 0.00455 

Table 5-6 presents three stress components which were averaged over the aforementioned 

Regions 1, 2 and 3 (the subscript value indicate number of the region) and normalized by the 

factor 

1 
bh2 

^o =TT j \crx(a9y9z)cfydz 
bh-2  0 0 

(47) 
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Table 5-6: Convergence of the averaged stresses computed for local Regions 1, 2 and 3. 

Mesh 4" 
^0 

?(0 L xz 

^0 

u X 
-(2) L xz 

^0 

ä(3) u X 
-(3) ?(3) 

L XZ 
variant 

^0 &0 ^0 ^0 a0 ^0 

Without crack 

1 1.431 0.1797 0.0917 1.418 0.0684 0.1477 0.0925 0.2248 0.1601 

2 1.432 0.1812 0.0920 1.417 0.0663 0.1471 0.0911 0.2241 0.1591 

5 1.432 0.1815 0.0922 1.417 0.0660 0.1470 0.0903 0.2239 0.1588 

4 1.430 0.1809 0.0916 1.419 0.0681 0.1474 0.0918 0.2243 0.1596 

5 1.430 0.1809 0.0918 1.419 0.0680 0.1471 0.0916 0.2242 0.1595 

With the A-crack 

1 1.445 0.0843 0.1422 1.328 0.0146 0.0835 -.05093 0.0126 0.0327 

2 1.444 0.0832 0.1419 1.328 0.0149 0.0835 -.05003 0.0108 0.0326 

3 1.444 0.0830 0.1419 1.328 0.0148 0.0835 -.05028 0.0102 0.0327 

4 1.443 0.0844 0.1421 1.328 0.0143 0.0833 -.05076 0.0125 0.0326 

5 1.443 0.0841 0.1417 1.328 0.0144 0.0832 -.05071 0.0125 0.0326 
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Fig. 5-9: Distributions of the displacements (a) Ux/uQ (O), uyju^ (0) and uJliQ ( A) and stresses 

(b) Cz/a0 (•), T xz/cr0 (A) along the ^-coordinate at x = a2 — hpj2 , z = h2 - hp/2 calculated with 

mesh variants 1, 6, and 7 of Table 5-4. 

Results presented in Tables 5-5 and 5-6 clearly show convergence of all of the considered 

characteristics. Interestingly, the total potential energy density, D, is absolutely insensitive to the 

mesh refinement. This is not a surprise, because this is the objective function minimized in the 

present variational analysis. Local potential energy densities, Dx, D2, D3 and Dx_2, show small 

fluctuations. The displacements at the corner point, where stresses may be singular, show clear 

convergence. Moreover, for all three local regions considered, the averaged stresses have 

undoubtedly converged. Thus, if desired, these computed stresses can be utilized for the purpose 
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of local failure prediction, by applying them in conjunction with some mathematical failure 

criterion (the maximum stress criterion and numerous variants of the tensor polynomial criterion 

can be mentioned as examples). 
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Fig. 5-10: Variations of the displacement 
corresponding to the I-crack (a), A-crack (b) and 
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Fig 5-11: Variation of the displacements 
corresponding to the I-crack (a), A-crack (b) 
and C-crack (c) sliding in the case of 
unidirectional adherends 
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In order to illustrate a 3-D capability of the developed analysis, numerical results showing 

variations of the normalized displacements and stresses along the y-coordinate are presented in 

Fig. 5-9 for the meshes of bricks 1, 6 and 7 of Table 5-4. It is seen that the mesh refinement does 

not visibly affect the displacement variations, however the nonuniform mesh (variant No. 7) 

makes some effect on the stress variations. Note that the displacements ux and uz show very 

small variation along the y-coordinate while the variation of uy is close to a linear function (this 

is owed to the absence of any constraint at the lateral surface y = b). It has to be pointed out that 

the edge effect is more pronounced for the stresses. 

Our next objective is to proceed with the crack propagation analysis. First, it has to be 

mentioned that, according to the obtained prediction, the starter cracks introduced at the end of 

the overlap would open under the loading. Local distributions of the opening (Mode I) 

displacement uz and sliding (Mode II) displacement ux are shown in Figs. 5-10 and 5-11 for the 

above three types of crack. The starter I-crack was placed in the middle adherend at the interface 

between the first and second layers nearest to the adhesive. In the case of the A-crack the 

displacements were plotted for the adhesive-adherend interface from the side of middle adherend, 

z = #2 -0, and from the side of adhesive, z = /^ +0. In the case of the C-crack the displacements 

are shown for the mid-thickness of the adhesive layer. The results indicate that both the opening 

and sliding fracture modes take place for all three types of crack at the end of the overlap. The 

magnitudes of opening displacements for the cases of A- and C-cracks are close while the I-crack 

opening is about twice smaller. Also, it is seen that for all three types of crack the sliding and 

opening mode displacements are of the same order of magnitude. This indicates that in the 

problem under consideration the fracture Modes I and II are both significant. Thus, the example 

reveals a typical case of Mixed Mode I-II fracture. 

The dependencies of the calculated ERR are shown for the same three types of crack in Fig. 

306 



5-12. The applied displacement magnitude is taken u^ 0.2mm. It is seen that the ERR values 

for the A- and C-cracks are very close and, at the same time, have much higher magnitudes than 

that for the I-crack. This shows that the propagation of a starter I-crack can only be expected if 

there is a very poor bonding between the composite layers. The cohesive crack propagation is 

also unlikely, because it's CERR, Gc, is significantly higher than that of an adhesive crack (in 

particular, this was shown by experimental results [21] for the same bonded composite material 

and adhesive system as considered here). Thus, the highest possibility of failure in the initial 

stage of the process should be attributed to the adhesive crack propagation. 

It is seen in Fig. 5-12 that the ERR variation with the crack length is qualitatively different 

for the I-crack than for the A- and C-cracks. In the case of the I-crack, a maximum of G 

variation is reached for about 0.5mm long crack, then at the crack length 1.4mm there is a G 

minimum, after which a monotonic growth takes place. For the other two types of crack there is 

only a maximum of G which corresponds to approximately 1.8mm long crack. This result may 

be helpful in understanding the advanced stage of the joint failure, where the I-crack propagation 

has been observed as the dominating failure mode [12]. 

The developed analysis enables predicting some other useful characteristics of the 

progressive failure process. In particular, variation of the "global" (averaged) longitudinal 

stiffness of the joint, which is defined according to the formula 

(Cx) = ——j f (Jx{a,y,z)dydz = a0 — (48) 
u0 bh2 

J
0 

J
0 u0 

have been computed as function of the crack length for the I-, A- and C-crack cases. The results 

presented in Fig. 5-13 show that the global stiffness reduction is very small for the I-crack and 

more pronounced for the A- and C-cracks. However, even for the cracks 5mm long, the global 

stiffness reduction of the joint is only about 4%. This may be explained by the in-plane loading 

307 



direction and the in-plane crack orientation in the problem under consideration. 

o 

12 3 4 
Crack Length, mm 

2 3 
Crack Length, mm 

Fig. 5-12: Dependencies of the energy release rate on the crack length at 

UQ — 0.2 mm in the case of unidirectional adherends. 
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Fig. 5-13: Variations of the global stiffness (1.48) with the 
crack length in the case of unidirectional adherends. 

Further, Fig. 5-14 illustrates variation of the "critical" applied displacement u as a function 

of crack length. The above critical displacement is defined as such value of uQ which drives the 

starter crack to the given length. Due to the uncertainty in experimental values of the CERR for 

all three types of crack under consideration (and, especially, keeping in mind that a Mixed Mode 

I-II fracture has been predicted), the curves in Fig. 5-14 were plotted for several values of CERR. 

A similar type of illustration, but for the case of applied stress, is shown in Fig. 5-15. The 

"critical" applied stress, a , is defined as such magnitude of <r0 (48) under which the starter 

crack propagates to a given length. The above results allow one to evaluate various possibilities 

of the crack propagation, under the prescribed displacement or load, and to also define the critical 

displacement and critical stress magnitudes assuming that the required CERR values are known. 

However, if those are not known exactly, a bunch of curves shown in Figs. 5-14 and 5-15 may be 

of use. 
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Fig. 5-14: Dependencies of the critical applied displacement on the crack length for the 
I-crack (a), A-crack (b) and C-crack (c) in the case of unidirectional adherends. Values 
at the curves indicate the critical strain energy release rate in J/m2. 
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Results of the experimental study aimed at defining CERR for bonded unidirectional 

T300/5208 composites with FM-300 adhesive have been reported in [21]. According to those, 

the CERR for the adhesive type of crack is about 500J/m2
r Hence, referring to Figs. 5-14b and 

5-15b, the adhesive starter crack having length 1mm should propagate under the applied 

displacement value 0.225mm or applied stress value 425MPa. If the applied displacement is kept 

constant, the starter crack propagates until it reaches 4mm length, and then stops. To a contrary, 

the crack does not stop if the stress level is kept constant. 

The CERR value for a cohesive crack type is, according to [21], significantly higher than 

500J/m2. Accordingly, results shown in Figs. 5-14b and 5» 14c indicate that the A-crack 

propagation would be a more likelihood event. Further, the I-crack propagation, according to 

Fig. 5-14a, can not be expected in the whole considered range of the applied displacement 

magnitudes, because experimental values of the CERR for the interlaminar fracture of 

unidirectional T300/5208 composite, according to different authors, is in the range between 250 

and 300J/m2. 

Our next objective is to compare the predicted failure loads with the experimental data of 

[12], where the following ultimate failure stress values were obtained for different surface 

preparation techniques: 50\MPa (acetone wash), 439MPa (hand sanding), 469MPa (grinding), 

and 453MPa (grit blasting). It is seen that all of them are higher than the stress value 425MPa 

which corresponds to the predicted A-crack propagation at the initial stage of failure. On the 

other hand, it was observed in [12] that initial cracks appeared at about 70% of the ultimate load 

which yields, in the case of acetone wash, 350MPa. Thus, the predicted fracture initiation load is 

in the interval between the experimental fracture initiation load and the ultimate failure load. At 

this point we cannot present a more precise comparison due to the following reasons: 

(a) as was shown above, the Mixed Mode I-II fracture is predicted for the structure under 
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consideration; however, the respective CSERR values are not available; 

(b) the analysis results reported here did not account for a mutual interaction between the I-, 

A- and C-cracks; 

(c) as was observed in [12], the major crack propagated inside the top layer of the middle 

adherend; rigorously, that crack is not the same as the I-crack considered in the analysis; 

(d) the analysis did not consider possible intra-ply damage in the adherends, which would 

favourably affect the I-crack propagation. 

The issue (a) can be only resolved by conducting suitable experiments. The issues (b) and (c) 

can be studied by analytical tools presented here. In order to address issue (d), it is necessary to 

incorporate in the analysis some damage mechanics approach (specifically, a reasonable local 

stiffness reduction scheme). It is anticipated that if taking into account the effects (b)-(d), a more 

precise and complete comparison between the experimental phenomena observed in [12] and 

theoretical predictions will be obtained, and this will reduce the gap between the experimental 

and analytical failure loads. 

5o5    Analysis of Double-Lap Joint with Cross-Ply Composite Adherends 

Next example considers the same double-lap bonded joint having geometric parameters (41), 

but with the cross-ply symmetric adherend lamination. Like before, each adherend is made from 

16 plies of unidirectional Graphite/Epoxy tape AS4/3501-6 having elastic characteristics (42). 

The outer plies in all adherends are reinforced in the x-direction. The same adhesive film Cytec 

FM300-2K with elastic properties (43) is considered. The geometric boundary conditions (44) 

apply. An experimental study of this kind of the bonded joint specimens was performed in [13]. 
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In order to reduce computational size of the problem, we apply here a partial "smearing" of 

the laminated adherends. A 16-ply, [0/90° ]4s, laminate is reduced to a 3-layer laminate having 

the same total thickness, but composed from two original plies maintaining their actual 

orientations, 0° and 90°, and the third, thick "smeared" layer representing 14 other plies as a 

homogeneous orthotropic material. Effective stiffnesses of the latter one have been calculated 

using equations (5.50) of [22]. Structure of the upper half of the joint with the partially smeared 

cross-ply laminated adherends is shown in Fig. 5-16. 

14 smeared plies 4B- 

upper adhere 

■ncr 

k2 

x 

Adhesive 
"0" 
~9(r 

6 smeared plies ih- 
upper half of middle adherer* 

Fig. 5-16: Smearing scheme of the laminated adherends. 

Results presented in this section were obtained using the mesh variant No. 9 of Table 1.4. 

The normalized opening and sliding displacements at the end of the overlap are given in Figs. 

1.17 and 18. When comparing these results with the respective results in Figs. 1.9 and 1.10 it is 

seen that the adherend lamination has very little effect on the A- and C-crack openings. A slight 

difference is observed only for the interlaminar crack, which has smaller sliding displacements 

and also smaller crack opening in the case of the cross-ply lamination. Like in the case of 

unidirectional adherends, the joint with cross-ply adherends show Mixed Mode I-II fracture for 

all three types of crack. 
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Fig. 5-17: Variations of the displacements 
corresponding to the crack opening mode for the 
I-crack (a), A-crack (aO and C-crack (c) in the 
case of [0° / 90°]4s adherends 

Fig. 5-18: Variations of the displacements 
corresponding to the crack sliding mode for the 
I-crack (a), A-crack (aO and C-crack (c) in the 
case of [0° / 90°]4s adherends 
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Variations of the "global" stiffness of the joint, defined earlier by (1.48), versus the I- and A- 

crack lengths are shown in Fig. 5-19. Similarly to the case of unidirectional adherends (see Fig. 

5-12), the effect of the I-crack is very small while the 7mm long A-crack reduces this structural 

characteristic by 3%. 

A comparison of the variations of the ERR with increasing length of the I- and A-cracks is 

shown in Fig. 5-20. Similarly to the case of unidirectional adherends (see Fig. 5-11), the G 

values in the case of cross-ply adherends are significantly higher for the A-crack than for the I- 

crack, however the difference in Fig. 5-20 is relatively smaller than in Fig. 5-11. Again, it is 

noticed that the G-variation has only a maximum in the case of the A-crack while both the 

maximum and minimum are present in the case of the I-crack. This qualitatively distinct 

behavior can be useful for an explanation of the advanced stage of crack propagation. Indeed, as 

seen in Fig. 5-2la, if one had assumed the CERR for the I-crack being 200J/m2 and for the A- 

crack being 500//m2, then the predicted crack propagation process would occur as a mixture of 

the A- and I-crack growths. Specifically, below the applied displacement 035mm no crack 

growth is predicted. If the applied displacement were 0.39mm then the starter A-crack having 

length 0.2mm would grow to the length 3mm and then stop. With the applied displacement 

0.42mm both the A- and I-cracks would grow: the A-crack to the length 4mm and the starter I- 

crack having length 0.2mm to the length 0.8mm. If the applied displacement were 0.42mm, then 

the A-crack would grow to 7mm and stop while the I-crack would show an unstable growth. It is 

also seen from Fig. 5-2 lb that if a very poor interlaminar bonding of the composite were 

assumed, say 100//m2, then an unstable I-crack propagation would occur under the applied 

displacement 0.37mm while the A-crack would only propagate from the length 0.4mm to 2.4mm. 

Analogous trends are recognized in the case of the applied stress, see Fig. 5-22. 
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Experimental results reported in [13] show that the ultimate failure load for the adherends 

with cross-ply lamination [0/90°]4iS, which was solved in the above analytical example, is 

331MPa« Similarly to the case of unidirectional adherends, the major crack observed in this type 

of experimental specimen has grown within the middle adherend in the upper 0° ply, near the 

adhesive interface. The present theoretical predictions for the failure initiation loads are: 

380MPa (the A-crack propagation) if assuming the CERR values as in Fig. 5-22a, and 300MPa 

(the I-crack propagation) if assuming the CERR values as in Fig. 5-22b.   This comparison just 
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Fig. 5-19: Variations of the global stiffness (48) on the crack length in the case of [0° / 90°]4s adherends. 
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Fig. 5-20: Dependencies of the energy release rate on the crack length 

at u0 = 0.2 mm in the case of [0° / 90°]4s adherends. 

317 



indicate that the experimental ultimate failure load and the predicted failure initiation load are in 

the same range. A more detailed comparison will be possible after conducting additional 

analytical and experimental work, as discussed in the previous section. 
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Fig. 5-21: Dependencies of the critical applied displacement on the crack length for the I- and 
A-cracks in the case of [0° / 90°]4s adherends. Values at the curves indicate the critical strain 

energy release rate in J/m2. 
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Fig. 5-22. Dependencies of the critical applied stress on the crack length for the I-and A- 
cracks in the case of [0° / 90°]4s adherends. Values at the curves indicate the critical strain 

energy release rate in J/m2. 

5.6    Conclusions 

The developed variational 3-D Mosaic Model analysis enables solving various problems of a 

planar crack propagation in composite structures and, particularly, in composite bonded joints, 

by numerically evaluating the total potential energy release rate and further applying the critical 

energy release rate criterion. 

Specific results obtained for the double-lap adhesive bonded joints with unidirectional and 

cross-ply composite adherends show that there are significant qualitative distinctions between the 
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adhesive or cohesive crack propagation on one side, and the interlaminar crack propagation on 

the other side. Also, it has been revealed that during the initial stage of failure, the adhesive 

crack is more likely to propagate than the cohesive or interlaminar cracks. However, the 

interlaminar crack propagation may become a dominant failure mechanism at the advanced stage 

of failure, especially if accompanied by such effects as the crack interaction and dispersed 

damage in the composite adherends. 

A preliminary quantitative comparison of the obtained theoretical predictions with the 

available experimental data for the unidirectional and cross-ply composite bonded joints show 

that there is certain correspondence between the analytical and experimental results, though the 

problem is far from being solved. Further theoretical developments and comprehensive 

numerical studies, along with a more detailed experimental investigation of failure processes in 

composite bonded joints are needed. 

An extensive set of numerical results presented in this report for the energy density 

distributions, locally averaged stresses, crack opening and sliding displacements, variations of 

the energy release rates with the crack length, global stiffness reductions due to the crack growth, 

as well as the computed critical applied displacement and stress magnitudes, can be useful for the 

numerical comparisons of other analysis methodologies and computer codes. 
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6.0 FINITE   ELEMENT  ANALYSIS   OF  COMPOSITE  BONDED   JOINTS   WITH 
ACCOUNT OF A SPEW FILLET 

6.1 Introduction 

The 3-D finite element analysis results presented in Section 4, Part B were obtained using 

submodeling technique available in ABAQUS. It was assumed that the adhesive terminates in a 

square end of the overlap. In reality, a fillet of adhesive (called the spew) exists in any bonded 

joint. As was noted in [1], it would be difficult to completely remove the spew by machining 

without machining either of the adherends. Moreover, machining would also initiate cracks in 

the adhesive. Thus, considering adhesive layer with a perfect square edge without cracks in the 

adhesive has to be viewed as the mathematical abstraction which can be hardly realized in 

practice. 

The effect of spew fillet on the stress/strain distributions in adhesive bonded joints has been 

studied both theoretically and experimentally [l]-[8]. All of the known theoretical work was 

performed using finite element method« Specifically, various 2-D plane strain elements were 

applied, while the only 3-D analysis can be found in [7], where constant strain element has been 

used. Aluminium adherends were considered in most of the above works, with the exception of 

[5] where the adherends were steel and carbon fiber composites, [6] where the adherends were 

ARALL-1 laminates with various fractions of the aluminium and composite layers, and [8] 

where laminated graphite/epoxy adherends were used. Single-lap bonded joints were studied in 

[1], [2], [4], [6], [7], [8], while double-lap bonded joints were considered in [3], [5] and [6]. The 

loading case in all of the above studies was uniaxial in-plane tension. 

This chapter presents stress analysis of double-lap composite bonded joint solved using 

submodeling technique available with ABAQUS finite elements. Details of its application to the 

problems of adhesive bonded joints can be found in Section 1 thru 4. The problem is treated in a 

2-D formulation with the use of rectangular and triangular plane stress elements. 
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6,2    Analysis Approach 

A double lap composite bonded joint under consideration is illustrated in Fig. 6-1. Schematic 

of the conventional spew models in shown in Fig. 6-2. Usually, it is assumed that the spew is a 

45° triangle which may cover the full thickness of the adhesive and upper adherend (case G-D), 

only the adhesive layer (case E-B) or have any intermediate height (case F-C). The angles other 

than 45 have also been considered in [5]. 

From the analysis standpoint, the problems of adhesive bonded joint with square end of the 

overlap and with the spew fillet are quite different. Indeed, in the case EA, point A is the major 

suspect for stress singularity (that was confirmed by a comprehensive finite element, study) and, 

accordingly, for the failure initiation. However, in the presence of a spew, this point does not 

play any special role. Rather, the locus of stress singularity can now be anticipated at one of the 

points B, C or D, depending on the particular spew model. Also, the stress character at point E is 

obviously different in the case EA versus EB or FC. In addition, points F and G should gain 

attention. Hence, a very different stress distribution in this local region can be expected. 

When briefly summarizing results of the previous analytical and experimental studies, it has 

first to be mentioned that the predicted stress distributions in the adhesive at the end of the 

overlap, were found very different when taking into account the spew fillet than in the case of the 

square end. The most significant stress peak has been predicted at point E, and a lower peak at 

point D (in the model GD) or B (in the model EB), see [3], [4] and [5]. The maximum tensile 

stress has been predicted at point E at an angle of approximately 45° to the loading direction [1]. 

Accordingly, the cracks are forming at this angle, as observed in the failed joints. It was found 

that the failure initiation takes place in the adhesive within the spew fillet, and the cracks run 

close to the corner of the "unloaded" adherend [1]. The experimental observations [3] showed 

that in the single-lap joints these cracks appeared to propagate immediately along the joint to 

324 



(a) 

(b) adhesive layer ABCDA'BfC?Df 

Fig.6-.l: A double-lap composite bonded joint under consideration (a) and its 1/8-th part analyzed (b). 

cause catastrophic failure. However, this was not always the case with the double-lap joints, 

where sometimes the crack was arrested at the interface and did not propagate until a higher load 

was applied. 

The aforementioned failure mode has not been found, however, the only one which can be 

realized in the joints with spew fillet. It was suggested in [1] that if the boundary of the adherend 

and adhesive is relatively weak, then the longitudinal crack can be created, and the spew fillet 
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"Unloaded" adlierend 

Adhesive layer 

B 

"Loaded" adherend 

Spew fillet 

Fig. 6-2: Illustration of the spew fillet models in adhesive bonded joint 

Loading 
direction 

can separate from the "loaded55 adherend. Another possible failure mode has been suggested in 

[4], namely, formation of the transverse crack leading to the separation of the spew fillet from the 

"unloaded55 adherend. Actually, the latter failure mode has been systematically observed in the 

experimental study [6]. It should be added that the author of [5] had observed experimentally 

that, despite the theoretical stress concentration at the corner of the "unloaded55 adherend, the 

crack which initiates failure "rarely, if ever, cuts across the corner, but is usually about the same 

distance as the adhesive layer thickness away from it55. 

Our objective here is to illustrate some effects of the spew fillet on stress distributions in 

adhesive bonded joint of unidirectional composite adherends analyzed earlier in Part B, Section 

4. The same submodeling concept has been utilized in the present study, however with the use of 

2-D plane stress elements. This simplification of the analysis was adopted because it allowed to 

use much finer meshes of elements in both the global and local analyses, as compared to the full 

3-D analysis.  Two types of elements were applied: 8-node plane stress quadrilaterals (CPS8 in 

the ABAQUS notation) for the rectangular regions of the adherends and adhesive and 6-node 

plane stress triangles (CPS6) for the spew fillet region.    Unlike in most of the previously 
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published works, the spew fillet boundary is not modeled here as a straight line, but as the 

concave arc of radius ha9 as shown in Fig. 6-3. Such a spew model seems more realistic. 

Z m 

z. 

z ii 

e x X* xf *g 

Fig. 6-3:  Illustration of finite element mesh used in the local analysis with the spew fillet (not in scale); the 
mesh of triangle elements shown differs from the actual one generated by PATRAN. 

6.3    Numerical Results 

First, the global analysis was performed with the following numbers of quadrilateral elements 

in the x and z-directions (see Section 4.4, Part B for the notations): 

^0, = 4, N*ab =8, Nl =8, N* =4, tff =4, N* =8, N% =8, N* = 4 V 

A/z = 4     AP  = 4     /Vz   = 4 

rsi (1) 

(2) 

Nonuniform meshes of elements in both the x and z-directions were used for the adherends 

and also in the x-direction for the adhesive. The smallest elements in the x-direction were chosen 

near the lines x = xb and x = xf.  The smallest elements in the adherends in the z-direction were 
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chosen near the lines z - z/ and z- zm. A uniform z-direction mesh was used for the adhesive. 

Then, the obtained nodal displacements were applied to the local analysis which was 

performed for the region defined by the coordinates xe I a = 0.5444 and xgl a = 0.5667. Element 

mesh used for the local region is schematically shown in Fig. 6-3. The following numbers of 

quadrilateral elements were taken in the x-direction: 

JV£ = 16, N%,=4, Nx
fg = \6 (3) 

with the same numbers of elements in the z-direction (2) as used in the global analysis. 

A comparison of local distributions of the stresses calculated with and without the spew fillet 

is presented in Figs. 6-4 and 6-5 for the lower interface (between middle adherend and adhesive) 

and in Figs. 6-6 and 6-7 for the upper interface (between upper adherend and adhesive). In this 

scale, the horizontal end of the spew fillet corresponds to the point xf la = 0.55584. When 

considering results for the lower interface in Figs. 6-4 and 6-5, it is seen that in all cases the 

stress peaks are located between the corner point of the square-ended joint, xfl a = 0.55556, and 

horizontal end of the spew fillet, xf•/ a = 0.55584. This result is in a qualitative agreement with 

the earlier finite element analysis results reported in [1], [3], [4] and [5]. It is also seen in 

Fig. 6-4 that in the adherend, there is a minor effect of the spew on the normal stress components 

ax and az, and a more considerable effect on the shear stress component xxz. For all three stress 

components under consideration, the peak values in the adherend are lower in the presence of the 

spew. 
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The most significant effect is observed in Fig. 6-5 for the stresses ax and az in the adhesive. 

These stress components do not tend to grow infinitely as in the case of the square edge, but 

reach their finite-valued maximums inside the spew zone. It is seen that at tends to a rather 

small but clearly nonzero value at the end of the spew fillet, while az and xxz tend to zero there. 

Also, when comparing the variations of az and xxz in the adherend and adhesive in Figs. 6-4 and 

6-5, it is seen that their continuity at the interface is accurately satisfied in the presence of the 

spew. Thus, it seems that the common computational problem caused by the stress singularity at 

point A of the square-edged joint can be successfully resolved by introducing the spew fillet. It 

needs to be further studied, if there is a significant stress concentration effect at the horizontal 

end of the spew fillet (some indications of that for the triangular spew fillet models can be seen 

in the results of [3]-[5]). However, such an effect seems unlikely to occur for the "smooth" spew 

fillet model used in the present work. 

Now consider results for the upper interface presented in Figs. 6-6 and 6-7. First, it is noticed 

that shapes of all stress distributions are similar for the cases with and without the spew fillet. 

However, the peaks of all three stresses in the adhesive become even higher and sharper in the 

spew fillet case. The convergence study has not been performed for this problem, but it is 

anticipated that the stresses should be still singular at point E. Though the situation may be 

different when using the spew fillet model FC or GD (see, Fig. 6-2). Also, it is recognized in 

Fig. 6-7 that the effect of spew fillet on stress distributions in the upper adherend is not 

significant. It is also observed that the continuity of az and %xz along the upper interface is not 

satisfied. Thus, introducing the spew fillet of the type shown in Fig. 6-3 does not fully resolve 

the analytical difficulties related to the corner point E. Further modification of the spew fillet 

model is required. 
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6.4    Conclusions 

The previous as well as the present analytical results along with the experimental 

observations with moire interferometry [8] lead to the major conclusion that the spew fillet 

radically changes the stress distributions in the adhesive along the lower interface near the end of 

the overlap. Consequently, it seems necessary to take into account this effect if one wishes to 

predict failure initiation of the joint. 

Possibly, in some cases (especially for the single-lap joints), the failure initiation in the spew 

could be viewed as a close predecessor of the adhesive or cohesive crack propagation in the 

overlap region, and thus may provide a slightly conservative estimate of the ultimate failure load. 

However, it should not be taken as a rule that the crack formation in the spew or its separation 

from the adherends will cause immediate failure of the joint. Even in the case of metal 

adherends it is rather obvious that the spew, having very small volume, a relatively low elastic 

modulus and, at the same time, constrained to a rather low deformation by the adherends, can not 

play a major role in the load transfer between the adherend. The load transfer still takes place 

through some region of the overlap. 

The effect of a spew fillet on the progressive failure of composite bonded joints is expected 

to be a rather insignificant. Indeed, in the case of laminated composite adherends, where 

progressive failure involves delamination and intralaminar damage (as discussed in Section 5 of 

this report), it seems unlikely that such modes of progressive failure can be considerably affected 

by the crack(s) created in a small volume of a relatively soft spew. 
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7.0 THREE-DIMENSIONAL MOSAIC MODEL ANALYSIS WITH ACCOUNT OF 
THE ENVIRONMENTAL EFFECTS 

7.1 Introduction 

The earlier developed 3-D Mosaic Model analysis of stresses/strains and progressive failure 

(see9 Section 5 of this Report) in composite structures and, particularly, adhesive bonded joints, 

allows one to solve various mechanical loading cases. However, the effects of environmental 

conditions (primarily, when changing temperature and/or humidity) are also of a great 

significance. This chapter presents methodology of incorporating two effects from this category, 

namely the linear thermal expansion and moisture swelling into the analysis of stresses/strain 

states and crack propagation in composite structures. It is assumed that the aforementioned 

effects can be characterized in terms of linear relations with respect to the temperature change 

and moisture change by weight. Besides, it is assumed that the aforementioned effects are not 

interrelated. The computer code realizing this approach had been developed and tested on some 

benchmark thermomechanical problems, though no numerical results of bonded joint analysis 

were obtained due to a stop work. 

12    Incorporation of the Thermal Expansion and Moisture Swelling Effects into 3-D 
Mosaic Model 

Theoretical development presented in this section is an extension of the equations given in 

Part B, Section 1. Those equations which are not changed by the temperature and moisture 

effects are not reproduced here. 

Considering linear hygro-thermoelastic behavior of the sth anisotropic brick, the stress-strain 

relations are written in the following concise form 

3t!(r) = C^^{v)-ß(^T(s\x)-yfvM4^{T); $#£# = 1,2,3 (1) 

where r=[x,y,z) is position vector, ATis)(r) and AM(s)(r) are the temperature change 

and moisture change by weight, respectively, between two states of the 5th brick; they may be 
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any continuous functions of the coordinates.   Further, ßis^ and yi^ are second rank tensors 

which are related to the tensors of thermal expansion   a{^   and moisture swelling   Ju{^, 

respectively, through the relations 

It has to be pointed out that all of the above quantities with "~" are the tensorial ones. When 

introducing the respective "engineering" quantities and representing them in the 6 element 

column and 6x6 matrix format, equations (3.1) and (3.2) are obtained in the following form: 

CT
(;)(r) = C^)(r)-y5(;)Arw(r);  ^ = 1,2,...,6 (3) 

Ä1) = c£)<>;  /? = (%,{? (4) 

where C^ are conventional "engineering" stiffnesses; 

ß\s) = ß\?, ß(
2
s) = M. #> = Ä?, ß{:} = M, #} = Ä?>#' = 'M; «>(5) - 2};>, a« = sw 

22   5 

££3      — OC<~>'i 5   ££4     — Z6^23 '   ^5     — ^-^13   5  ££g     — £CCY2   ? 

and 

Equation (3) can be viewed as a straightforward generalization of the stress-strain relations, 

Part B Sec 1 (3), with the temperature and moisture terms added. Note that similarly to the 

model adopted in [1], the contribution of moisture swelling is, essentially, of the same form as 

the one of the thermal expansion. 

Now, strain energy of the sth brick is defined as 
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p M 

FwL 
C^sfs^ -ßfsfM(s) -yfefAM^ W (5) 

and for the whole mosaic body one obtains 

C4"4" -Pi'zf^" -rfsfAM'" \ir 
s 

= ry(pE{s) - pm<<sA - pE _ p 
(6) 

where P   is "elastic59 part of the total strain energy and P     its "hygro-thermal" part; the latter 

one is defined as 

s 

i. pHT = £ }[(^s)Ar(s) +r{;)AM(s)y;) 
dV (7) 

Explicit expression of PE{s) is provided by equation (12), Part B Sec 1. The expressions of 

the work of external mechanical surface forces A(s), presented by (17) and (20), Part B Sec 1, 

hold. 

The expression of pHT{s\ when written explicitly, represents a linear form of the 

displacement approximation coefficients U^s): 

r    Jx   Kr L     X    K. 

pHns) =ZEI^,,®U) +ZEZ^iw®SI) +SZZ^)®S') (8) 
/=o y=o £=o /=0 y=0 £=0 /=0 7=0 k=0 

Note that there is an obvious similarity between expression (8) for pHT{s) and the expression 

(20), Part B Sec 1 for A{s). Besides, PE{s) is not related to the thermal expansion effect. 

The following notations were introduced in (8): 

£)Hs)  _ r\üuu(s)   ,£\uuü(s)   .   r\uüu(s) 
^ijk     -^ijk        ^^ijk        ^^ijk 

02(5)       favvo(s)      r^wv(s)      Qfw(s) (9) 
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fc\3(s)   _ (^iozuw(s)       r\www(s)   ,r\zimm)(s) 

with the integrals defined as follows 

xt+\ ym+\ -«+i 

®7(S)= J   1   l[ß\s)AT^\x,y,z) + r\s)AM^(x,y,z)]x;i(x)Y;i(y)Zu
k(z)dxdydz 

xi   ym 

X/+l y,n + \ zn + l 

®?W = 1   1   j[ß\s)^s\x,y,z) + r^AM(s)(x,y,z)]x;'(x)Y;'(y)Z:(z)dxdydz 
xi    ym    Zn 

x!+\ ym + \ -n + \ 

®tm= n! A^AA/fU) fä>APs>(xty,z) + r?AMKS>(x,y,z) X«{x)Y;{y)Zu
k{z)dxdydz 

x!+i y»!+i z»+i 

®TS)= \   J   l[ß(2S)^\x,y,z) + r
(

2
s)AM(s\x,y,z)]x:(x)Y;(y)Zl(z)dxdydz 

Xl      y,n       Zn 

= }' '[' ]\ß^AT{s\x,y,z) + r\s)AMis\x,y,z)}{J(x)Yj(y)Zl(z)dxdydz 
(3.10) 

*i  yHI 

Xl + l y,n + l Zn + \ 

®7(S)=\   \   j[ß{s)AT(s\x,y,z) + ris)^M(s)(x,y,z)]x:(x)Y;(y)Zl(z)dxdydz 

Xl+[ ym + l Zn + l 

®T(S>= J   j   j[ßis)AT{s\x,y,z) + r^AMis\x,y,z)}xr(x)^(y)Zl"(z)dxdydz 
xi   ym 

xl+1 ym+l zn+l 

®T(5)= J   1   \[ß(I)^s\x,y,z) + ri:)AM^(x,y,z)]xr(x)Y;(y)Z:(z)dxdydz 
Xl       ym       Zn 

Xl + ] )'m + l Zn + \ 

®T(S)= j   J   \[ßf^s\x,y,z) + yfm{s\x,y,z)]x?{x)Y]»{y)Zl°{z)dxdydz 

The Ritz equations (9), Part B Sec 1, are modified to the form 
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Z 
gpEis) <^AiS) + PmS)) 

dU* «(/) dU a(f) 0,   a = 1,2,3 (11) 

Further, by substituting expressions (12) and 20), Part B Sec 1, together with expression (8), 

th- in (11) one obtains the following system of linear simultaneous equations for the s   brick: 

*X    JX    &x h  Jz Kz 
lyJyKy ... 

WY„11(5)   TTl(s) 4-Y YV   '2W   rr2(s)xVVY   '*)   TT3^=nl(s) 
Z—i Lu Z-j aijk,pqruijk    ^ Lu La Z-iaijk,pqruijk    ^Z-J £j Aj^ij^pqr1^ijk        Mpqr 
i=Qj=0k=0 i=Qj=0k=0 i=0j=0k=0 

for p = 0,l,-Jx;    q = 0,\,...,Jx;    r = 0,l,...,Kx 

z z i «gärt*'+z z z^^r+z z z «JW=$$+«c   »■ •« 
/=Oy=o/t=o i=oj=ok=o /=oy=o/c=o 

for/7 = 0,l,...,/),;    ^ = 0,l,...,Jy;    r = 0,l,...,^y 

*x   JX   &x y    y    y h    Jz   &z 

2-J2^2-S 
aijKpqrUijk    + 2^ 2^ zLjaijk,pqrUijk     +2w Z^ 2^ aijKpqrUijk    ~ öWr +^p/r 

z=oy=ofc=o /=oy=ofc=o /=oy=OÄ:=o 

forjp = 0,l,...,/z;    g = 0,l,...,/z;    r = 0,l,...,^z. 

It is seen that these equations represent the generalization of equations (22), Part B Seel; 

they incorporate additional terms ©l^r, 0
2^} and 6^ defined by (9).  Like before, the terms 

Qpqr> Qpqr  anc* Qpq) are defined by equations (21), Part B Sec 1. The coefficients a 

aijk,pqr are defined for the general case of anisotropy by equations (13), Part B Sec 1. 

Vk,pqr> 

Thus,   after  replacing   Ql
pfr   by   ^+6>^,   ß«?   by   ^?+6^?   and   ffpfr    by 

ö^r +@3pq?> rest of &e algorithm described in Sections 1 and 2, Part B does not change. 

Consequently, a 3-D hygro-thermomechanical stress/strain and failure analysis of bonded joints 

can be performed following the methodology presented in Section 3, Part B. 
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A simplified and more concise version of the above theory can be obtained using 

displacement approximation (5) assumed in Section 5 of this report, in place of the 

approximation (5), Part B Sec 1. In this case it is taken, Ix = Iy - L = I, Jx = Jy = Jz = J and Kx 

- Ky = Kz = K. After incorporating the effects of thermal expansion and moisture swelling into 

equations of Section 1, the only change is that vector Q^s' in (11) Part B Sec 1 has the following 

components: 

*<*> (13) <{&(,)+®5,)} 

l($\ 2(s) 3(s) 
where 0^ , 0^    and 0tjk   are defined by (9).  After that, the rest of the theory presented in 

Section 5 of this report, including all considerations regarding crack propagation analysis apply 

to the cases of thermal expansion, moisture swelling, mechanical loading, and any combination 

of thereof 

13 The Particular Case: Bricks Having One Plane of Elastic Symmetry 

Consider now one particular case of the above theory, which would directly apply to the 

analysis of laminated plates.   Assume that the mosaic structure is composed from orthotropic 

bricks having stiffnesses C^\ C$\ C$, C^\ C$, C$\ C$, C$, C$, coefficients of 

thermal    expansion    a^s\    a[s\    a^    and   moisture   swelling    j£s\    Ji^    and    Ji\s) 

(a\} = a5
w = a\} = ju\J = ju$ } = fi\ } = 0),  all  of them referred to  the principal  axes  of 

material symmetry xs,ys, zs* The quantities ß^ and y^ are then expressed as follows 

flw = Cf^a}s) + C£ms) + Cfcty8), ß{
2
s) = Cf2

s)ä}s) + C^a[s) + C^cc\s), 

Ms) = q[s)a}s) + C&tys) + C$ais), MS) = W =MS) = 0 (14) 

and 
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Y\     -Lll   M\     +L12 Ml    +M3   A    '   Yl    ~C12 A     +c22//2    +c23 M3    ' 

^3     -C13   Ml     +c23//2    +C33 A    '   ^4    ~ ^5     - ^6    ~u (15) 

If the angle between global axis x and local axis xs is denoted 0S and zs = z, then by 

applying the respective transformation law to (14) and (15) one obtains 

ß\s) = (q'V* + cl*ä? + q^cos2 o, +(c£yä[') + c!Ms) + c^ä\s))sm2 es 

ß(
2
s) = (C^ä[s) + Cgä? + C^ä^sin2 8S +(c£ä\s) + C^ä(

2
s) + C^ä^cos2 0S 

ß\ 3      ~~ M3    ul      ^ ^"23   a2     "*" ^"33   u3 (16) 

^=0, ^=0 

#> = [(Q(/} - Q^)^ +(^ - ^K' +(c£> - q<'>)ö<' sin*9 cos<9 

and 

y j'> = (q^ + C{MS) + C^)cos2 6S +(C£)#') + C^->/4'> + C2^^)sin2 0S 

/ 3     _C13   /*!     + C23   A     + C33   Ml (17) 

« ri"=o, rr' = o 

As) = (c? - cp)ft« +(c£> - c^ +(c£> - c$)-fi< sinö cos^ 

Thus, all of the input quantities required for the analysis have been expressed in terms of 

orthotropic elastic characteristics and coefficients of thermal expansion and moisture swelling of 

the bricks, assuming that those are given in the coordinate system related to principal axes of 

symmetry of the bricks. 
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Using the analysis methodology presented in this chapter, a computer code has been 

developed and applied to several benchmark thermomechanical problems which have known 

closed-form analytical solutions. The examples have been numerically studied, and it was found 

that the obtained results are in a full agreement with the exact ones. 
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